MỤC LỤC
Số nghiệm nguyên của bất phương trình $\Large (\sqrt{10}+3)^{\dfrac{3-x}{x-1}}<(\sqrt{10}+3)^{\dfrac{x+1}{x+3}}$ trong khoảng $\Large (-2018; 2018)$ là:
Lời giải chi tiết:
Chọn D
ĐK: $\Large x\neq -3; x\neq 1$
BPT $\Large (\sqrt{10}+3)^{\dfrac{x-3}{x-1}}<(\sqrt{10}+3)^{\dfrac{x+1}{x+3}}$$\Large \Leftrightarrow \dfrac{x-3}{x-1}<\dfrac{x+1}{x+3}\Leftrightarrow \dfrac{-8}{(x-1)(x+3)}<0\Leftrightarrow (x-1)(x+3)>0$
Vậy có số nghiệm nguyên trong khoảng (-2018; 2018) là 4030
Xem thêm các bài tiếp theo bên dưới