MỤC LỤC
Cho hàm số: $\Large f(x)=\dfrac{1}{2}\log_{2}\left(\dfrac{2x}{1-x}\right)$. Tính tổng:
$\Large S=f\left(\dfrac{1}{2017}\right)+f\left(\dfrac{2}{2017}\right)+f\left(\dfrac{3}{2017}\right)+...+f\left(\dfrac{2015}{2017}\right)+f\left(\dfrac{2016}{2017}\right)$
Lời giải chi tiết:
Chọn D
Xét: $\Large f(x)+f(1-x)=\dfrac{1}{2}.\log_{2}\left(\dfrac{2x}{1-x}\right)+\dfrac{1}{2}\log_{2}\left(\dfrac{2(1-x)}{x}\right)=\dfrac{1}{2}\log_{2}4=1$
Do đó: $\Large f\left(\dfrac{1}{2017}\right)+f\left(\dfrac{2016}{2017}\right)=1, f\left(\dfrac{2}{2017}\right)+f\left(\dfrac{2015}{2017}\right)=1, ...$
Suy ra: $\Large S=1+1+...+1+1=1008$
Xem thêm các bài tiếp theo bên dưới