MỤC LỤC
$\Large \mathrm{lim}\sqrt[4]{\dfrac{4^n+2^{n+1}}{3^n+4^{n+2}}}$ bằng:
Lời giải chi tiết:
Chọn B.
Ta có: $\Large \mathrm{lim}\sqrt[4]{\dfrac{4^n+2^{n+1}}{3^n+4^{n+2}}}$ $\Large =\mathrm{lim}\sqrt[4]{\dfrac{1+2^{1-n}}{\left(\dfrac{3}{4}\right)^n+4^2}}$ $\Large =\mathrm{lim}\sqrt[4]{\dfrac{1+2.\left(\dfrac{1}{2}\right)^n}{\left(\dfrac{3}{4}\right)^n+4^2}}=\dfrac{1}{2}$
Vì $\Large \mathrm{lim}\left(\dfrac{1}{2}\right)^n=0$; $\Large \mathrm{lim}\left(\dfrac{3}{2}\right)^n=0$.
Xem thêm các bài tiếp theo bên dưới