MỤC LỤC
Trong không gian Oxyz, cho mặt phẳng $\large (P): x+y-z-1=0$. Đường thẳng d đi qua O và song song với (P) đồng thời vuông góc với Oz có một vecto chỉ phương là $\large \vec{u}=(a; 1;b)$. Tính $\large a-b$
Lời giải chi tiết:
Vì $\large \left\{\begin{align}& O\in d\\& d\perp Oz\\\end{align}\right.$ $\large \Rightarrow d$ vuông cắt với Oz
ta có: $\large \left\{\begin{align}& d\perp (P)\\& d\perp Oz\\\end{align}\right.$ $\large \Leftrightarrow \left\{\begin{align}& a+1-b=0\\& b=0\\\end{align}\right.$ $\large \Leftrightarrow \left\{\begin{align}& a=-1\\& b=0\\\end{align}\right.$ $\large \Leftrightarrow a-b=-1$
Xem thêm các bài tiếp theo bên dưới