MỤC LỤC
Phương trình 2x−2=3x2+2x−8 có một nghiệm dạng x=logab−4 với a, b là các số nguyên dương thuộc khoảng (1;5). Khi đó a+2b bằng:
Lời giải chi tiết:
Chọn D
(x−2)log32=x2+2x−8⇔(x−2)log32=(x−2)(x+4)
⇔[x=2x=log32−4
Vậy a=3,b=2 nên a+2b=7
Xem thêm các bài tiếp theo bên dưới