MỤC LỤC
Gọi $\Large F(x)$ là một nguyên hàm của hàm số $\Large f(x)=2^x$, thỏa mãn $\Large F(0)=\dfrac{1}{\mathrm{ln}2}$. Tính giá trị biểu thức $\Large T=F(0)+F(1)+F(2)+...+F(2019)$.
Lời giải chi tiết:
Chọn A
Ta có: $\Large F(x)=\int 2^x\mathrm{d}x=\dfrac{2^x}{\mathrm{ln}2}+C$.
Theo giả thiết $\Large F(0)=\dfrac{1}{\mathrm{ln}2}$ $\Large \Leftrightarrow \dfrac{2^0}{\mathrm{ln}2}+C=\dfrac{1}{\mathrm{ln}2}$ $\Large \Leftrightarrow C=0$. Suy ra: $\Large F(x)=\dfrac{2^x}{\mathrm{ln}2}$
Vậy $\Large T=F(0)+F(1)+F(2)+...+F(2019)$ $\Large =\dfrac{2^0}{\mathrm{ln}2}+\dfrac{2^1}{\mathrm{ln}2}+\dfrac{2^2}{\mathrm{ln}2}+...+\dfrac{2^{2019}}{\mathrm{ln}2}$
$\Large =\dfrac{1}{\mathrm{ln}2}(2^0+2^1+2^2+...+2^{2019})$ $\Large =\dfrac{1}{\mathrm{ln}2}.1.\dfrac{1-2^{2020}}{1-2}=\dfrac{2^{2020}-1}{\mathrm{ln}2}$.
Xem thêm các bài tiếp theo bên dưới