Cho tứ diện $\large ABCD$ có $\large AB=CD=2a$. Gọi $\large M,N$ lần l

Cho tứ diện $\large ABCD$ có $\large AB=CD=2a$. Gọi $\large M,N$ lần l

4.7/5

Tác giả: Thầy Tùng

Đăng ngày: 18 Aug 2022

Lưu về Facebook:
Hình minh họa Cho tứ diện $\large ABCD$ có $\large AB=CD=2a$. Gọi $\large M,N$ lần l

Câu hỏi:

Cho tứ diện $\large ABCD$ có $\large AB=CD=2a$. Gọi $\large M,N$ lần lượt là trung điểm của $\large BC,AD$ và $MN=a\sqrt{3}$. Tính góc tạo bởi hai đường thẳng $\large AB$ và $\large CD$.

Đáp án án đúng là: C

Lời giải chi tiết:

Hình đáp án 1. Cho tứ diện $\large ABCD$ có $\large AB=CD=2a$. Gọi $\large M,N$ lần l

Gọi $\large I$ là trung điểm của $\large AC$, suy ra:

$\large\left\{\begin{align}MI//AB;NI//CD\\ MI=NI=a\end{align}\right.$

Khi đó $\large (\widehat{AB,CD})=(\widehat{MI,NI})$.

Xét tam giác $\large MIN$ ta có:

$\large\cos \widehat{MIN}=\frac{MI^{2}+NI^{2}-MN^{2}}{2MI.NI}=\frac{2a^{2}-3a^{2}}{2a^{2}}=-\frac{1}{2}\Rightarrow \widehat{MIN}=120^{\circ}$

Suy ra $\large (\widehat{MI,NI})=60^{\circ}$ hay $\large (\widehat{AB,CD})=60^{\circ}$