\r\nĐiều kiện: $\\Large \\left\\{\\begin{align} & x > 0 \\\\ & \\mathrm{log}_8x > 0 \\\\ & \\mathrm{log}_2x > 0 \\end{align}\\right.$
\r\n\r\nTa có: $\\Large \\mathrm{log}_2(\\mathrm{log}_8x)=\\mathrm{log}_8(\\mathrm{log}_2x)$ $\\Large \\Leftrightarrow \\mathrm{log}_2\\left(\\dfrac{1}{3}\\mathrm{log}_2x\\right)=\\mathrm{log}_2(\\mathrm{log}_2x)^{\\frac{1}{3}}$
\r\n\r\n$\\Large \\Leftrightarrow \\dfrac{1}{3}\\mathrm{log}_2x=\\sqrt[3]{\\mathrm{log}_2x}$ $\\Large \\Leftrightarrow \\mathrm{log}_2x=3\\sqrt[3]{\\mathrm{log}_2x}$ (*).
\r\n\r\nĐặt $\\Large t=\\sqrt[3]{\\mathrm{log}_2x}$ $\\Large (t > 0)$ $\\Large \\Rightarrow t^3=\\mathrm{log}_2x$
\r\n\r\n(*) $\\Large \\Leftrightarrow t^3=3t$ $\\Large \\Leftrightarrow \\left[\\begin{align} & t=0 \\\\ & t=\\sqrt{3} \\\\ & t=-\\sqrt{3} \\end{align}\\right.$ $\\Large \\Rightarrow t=\\sqrt{3}$ $\\Large \\Rightarrow \\sqrt[3]{\\mathrm{log}_2x}=\\sqrt{3}$ $\\Large \\Leftrightarrow \\mathrm{log}_2x=3\\sqrt{3}$
\r\n\r\n$\\Large \\Leftrightarrow x=2^{3\\sqrt{3}}$ (thỏa mãn đề bài).
\r\n\r\nVậy $\\Large P=(3\\sqrt{3})^4=729$.
\r\n","url":"https://hoc357.edu.vn/cau-hoi/cho-so-thuc-large-x-thoa-man-large-mathrmlog-2mathrmlog-8x-v7533","dateCreated":"2022-08-18T19:16:22.683Z","author":{"@type":"Person","name":"Trần Thanh Hùng"}},"suggestedAnswer":[]}}MỤC LỤC
Cho số thực $\Large x$ thỏa mãn $\Large \mathrm{log}_2(\mathrm{log}_8x)=\mathrm{log}_8(\mathrm{log}_2x)$. Tính giá trị $\Large P=(\mathrm{log}_2x)^4$.
Lời giải chi tiết:
Chọn C
Điều kiện: $\Large \left\{\begin{align} & x > 0 \\ & \mathrm{log}_8x > 0 \\ & \mathrm{log}_2x > 0 \end{align}\right.$
Ta có: $\Large \mathrm{log}_2(\mathrm{log}_8x)=\mathrm{log}_8(\mathrm{log}_2x)$ $\Large \Leftrightarrow \mathrm{log}_2\left(\dfrac{1}{3}\mathrm{log}_2x\right)=\mathrm{log}_2(\mathrm{log}_2x)^{\frac{1}{3}}$
$\Large \Leftrightarrow \dfrac{1}{3}\mathrm{log}_2x=\sqrt[3]{\mathrm{log}_2x}$ $\Large \Leftrightarrow \mathrm{log}_2x=3\sqrt[3]{\mathrm{log}_2x}$ (*).
Đặt $\Large t=\sqrt[3]{\mathrm{log}_2x}$ $\Large (t > 0)$ $\Large \Rightarrow t^3=\mathrm{log}_2x$
(*) $\Large \Leftrightarrow t^3=3t$ $\Large \Leftrightarrow \left[\begin{align} & t=0 \\ & t=\sqrt{3} \\ & t=-\sqrt{3} \end{align}\right.$ $\Large \Rightarrow t=\sqrt{3}$ $\Large \Rightarrow \sqrt[3]{\mathrm{log}_2x}=\sqrt{3}$ $\Large \Leftrightarrow \mathrm{log}_2x=3\sqrt{3}$
$\Large \Leftrightarrow x=2^{3\sqrt{3}}$ (thỏa mãn đề bài).
Vậy $\Large P=(3\sqrt{3})^4=729$.
Xem thêm các bài tiếp theo bên dưới