Cho hình chóp <span class="MathJax_Preview" style="color: inherit;"><span class="MJXp-math" id="MJXp-Span-1"><span class="MJXp-mstyle" id="MJXp-Span-2"><span class="MJXp-mi MJXp-italic" id="MJXp-Span-3">S</span><span class="MJXp-mo" id="MJXp-Span-4" style="margin-left: 0em; margin-right: 0.222em;">.</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-5">A</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-6">B</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-7">C</span></span></span></span><span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML MJXc-processed" tabindex="0" style="font-size: 127%;"><span id="MJXc-Node-1" class="mjx-math"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mstyle"><span id="MJXc-Node-4" class="mjx-mrow" style="font-size: 144%;"><span id="MJXc-Node-5" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.495em; padding-bottom: 0.298em; padding-right: 0.032em;">S</span></span><span id="MJXc-Node-6" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="margin-top: -0.145em; padding-bottom: 0.347em;">.</span></span><span id="MJXc-Node-7" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.495em; padding-bottom: 0.298em;">A</span></span><span id="MJXc-Node-8" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.445em; padding-bottom: 0.298em;">B</span></span><span id="MJXc-Node-9" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.495em; padding-bottom: 0.298em; padding-right: 0.045em;">C</span></span></span></span></span></span></span><script type="math/tex" id="MathJax-Element-1">\Large S.ABC</script> có <span class="MathJax_Preview" style="color: inherit;"><span class="MJXp-math" id="MJXp-Span-8"><span class="MJXp-mstyle" id="MJXp-Span-9"><span class="MJXp-mi MJXp-italic" id="MJXp-Span-10">S</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-11">A</span><span class="MJXp-mo" id="MJXp-Span-12" style="margin-left: 0.333em; margin-right: 0.333em;">=</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-13">S</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-14">B</span><span class="MJXp-mo" id="MJXp-Span-15" style="margin-left: 0.333em; margin-right: 0.333em;">=</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-16">S</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-17">C</span><span class="MJXp-mo" id="MJXp-Span-18" style="margin-left: 0.333em; margin-right: 0.333em;">=</span><span class="MJXp-mn" id="MJXp-Span-19">4</span></span></span></span><span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML MJXc-processed" tabindex="0" style="font-size: 127%;"><span id="MJXc-Node-10" class="mjx-math"><span id="MJXc-Node-11" class="mjx-mrow"><span id="MJXc-Node-12" class="mjx-mstyle"><span id="MJXc-Node-13" class="mjx-mrow" style="font-size: 144%;"><span id="MJXc-Node-14" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.495em; padding-bottom: 0.298em; padding-right: 0.032em;">S</span></span><span id="MJXc-Node-15" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.495em; padding-bottom: 0.298em;">A</span></span><span id="MJXc-Node-16" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.101em; padding-bottom: 0.298em;">=</span></span><span id="MJXc-Node-17" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.495em; padding-bottom: 0.298em; padding-right: 0.032em;">S</span></span><span id="MJXc-Node-18" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.445em; padding-bottom: 0.298em;">B</span></span><span id="MJXc-Node-19" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.101em; padding-bottom: 0.298em;">=</span></span><span id="MJXc-Node-20" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.495em; padding-bottom: 0.298em; padding-right: 0.032em;">S</span></span><span id="MJXc-Node-21" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.495em; padding-bottom: 0.298em; padding-right: 0.045em;">C</span></span><span id="MJXc-Node-22" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.101em; padding-bottom: 0.298em;">=</span></span><span id="MJXc-Node-23" class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.396em; padding-bottom: 0.347em;">4</span></span></span></span></span></span></span><script type="math/tex" id="MathJax-Element-2">\Large SA = SB = SC = 4</script>, $\Large AB

Cho hình chóp S.ABCS.ABCSA=SB=SC=4SA=SB=SC=4, $\Large AB

4.9/5

Tác giả: Thầy Tùng

Đăng ngày: 19 Aug 2022

Lưu về Facebook:
Hình minh họa Cho hình chóp $\Large S.ABC$ có $\Large SA = SB = SC = 4$, $\Large AB

Câu hỏi:

Cho hình chóp S.ABCS.ABCSA=SB=SC=4SA=SB=SC=4, AB=BC=CA=3AB=BC=CA=3. Tính thể tích của khối nón giới hạn bởi hình nón có đỉnh là SS và đáy là đường tròn ngoại tiếp ΔABCΔABC.

Đáp án án đúng là: C

Lời giải chi tiết:

Chọn C

Từ giả thiết suy ra hình chóp S.ABCS.ABC đều

hình chiếu của đỉnh SS trên mp(ABC)mp(ABC) trùng với tâm OO của đường tròn ngoại tiếp ΔABCΔABC.

Bán kính đường tròn ngoại tiếp ΔABCΔABCR=AO=3R=AO=3.

Chiều cao khối nón là: 

h=SO=SA2AO2=13h=SO=SA2AO2=13.

Thể tích khối nón cần tìm là:

V=13πR2h=π13V=13πR2h=π13.