Cho hàm số <span class="MathJax_Preview" style="color: inherit;"><span class="MJXp-math" id="MJXp-Span-1"><span class="MJXp-mstyle" id="MJXp-Span-2"><span class="MJXp-mi MJXp-italic" id="MJXp-Span-3">f</span><span class="MJXp-mo" id="MJXp-Span-4" style="margin-left: 0em; margin-right: 0em;">(</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-5">x</span><span class="MJXp-mo" id="MJXp-Span-6" style="margin-left: 0em; margin-right: 0em;">)</span></span></span></span><span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML MJXc-processed" tabindex="0" style="font-size: 127%;"><span id="MJXc-Node-1" class="mjx-math"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mstyle"><span id="MJXc-Node-4" class="mjx-mrow" style="font-size: 144%;"><span id="MJXc-Node-5" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.495em; padding-bottom: 0.495em; padding-right: 0.06em;">f</span></span><span id="MJXc-Node-6" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.445em; padding-bottom: 0.593em;">(</span></span><span id="MJXc-Node-7" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.199em; padding-bottom: 0.298em;">x</span></span><span id="MJXc-Node-8" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.445em; padding-bottom: 0.593em;">)</span></span></span></span></span></span></span><script type="math/tex" id="MathJax-Element-1">\Large f(x)</script> xác định trên $\Large \left[ 0;\dfrac{\pi }{2

Cho hàm số f(x)f(x) xác định trên $\Large \left[ 0;\dfrac{\pi }{2

4/5

Tác giả: Thầy Tùng

Đăng ngày: 18 Aug 2022

Lưu về Facebook:

Câu hỏi:

Cho hàm số f(x)f(x) xác định trên [0;π2][0;π2] thỏa mãn π20[f2(x)22f(x)sin(xπ4)]dx=2π2π20[f2(x)22f(x)sin(xπ4)]dx=2π2 . Tích phân π20f(x)dxπ20f(x)dx bằng

Đáp án án đúng là: B

Lời giải chi tiết:

Ta có π202sin2(xπ4)dx=π20[1cos(2xπ2)]dx=π20(1sin2x)dxπ202sin2(xπ4)dx=π20[1cos(2xπ2)]dx=π20(1sin2x)dx =(x+12cos2x)|π20=π22 

Do đó: 

π20[f2(x)22f(x)sin(xπ4)]dx+π202sin2(xπ4)dx=2π2+π22=0

π20[f2(x)22f(x)sin(xπ4)+2sin2(xπ4)]dx=0

π20[f(x)2sin(xπ4)]2dx=0

Suy ra f(x)2sin(xπ4)=0 hay f(x)=2sinx(xπ4)

Bởi vậy :

π20f(x)dx=π202sin(xπ4)dx=2cos(xπ4)|π20=0