Cho $f, g$ là hai hàm số liên trục trên $K$ và $a, b,c$ là ba số bất kì thuộc $K$ (không nhất thiết cần có $a < b < c$). Khi đó ta có:
Nếu $f(x) \ge 0$ trên $[a;b]$ thì $\displaystyle\int\limits_{a}^{b} {f(x)dx} \ge 0$.
Nếu $f(x) \ge m\,\,\,\,(m \in \mathbb{R})$ trên $[a;b]$ thì $\displaystyle\int\limits_{a}^{b} {f(x)dx} \ge m(b - a)$.
$\int\limits_{-1}^{2}{\left[ x+2f\left( x \right)-3g\left( x \right) \right]}dx=\int\limits_{-1}^{2}{xdx+2\int\limits_{-1}^{2}{f\left( x \right)dx-3\int\limits_{-1}^{2}{g\left( x \right)dx}=\dfrac{{{x}^{2}}}{2}}\left| \begin{align} & 2 \\ & 1 \\ \end{align} \right.=2.2-3.\left( -1 \right)}=\dfrac{17}{2}$
\(\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{c}{f\left( x \right)dx}+\int\limits_{c}^{b}{f\left( x \right)dx}=\int\limits_{a}^{c}{f\left( x \right)dx}-\int\limits_{b}^{c}{f\left( x \right)dx}=4\)
Khẳng định “Nếu $f\left( x \right)$ liên tục và $f\left( x \right)\ge 0$ trên $\left[ a;b \right]$ thì $\int\limits_{a}^{b}{f\left( x \right)d\text{x}}\ge 0$” đúng vì:
Giả sử $F\left( x \right)$ là một nguyên hàm của $f\left( x \right)$ trên đoạn $\left[ a;b \right]\Rightarrow F'\left( x \right)=f\left( x \right)\ge 0$
+ $F'\left( x \right)=0\Rightarrow F\left( x \right)$ là hàm hằng nên $\int\limits_{a}^{b}{f\left( x \right)d\text{x}}=0$
+ $F'\left( x \right)>0\Rightarrow F\left( x \right)$ đồng biến trên \(\left[ a;b \right]\Rightarrow F\left( b \right)>F\left( a \right)\Rightarrow \int\limits_{a}^{b}{f\left( x \right)d\text{x}}=\left. F\left( x \right) \right|_{a}^{b}>0\)
$\int\limits_{2}^{3}{f(x)dx+}\int\limits_{3}^{6}{f(x)dx}=\int\limits_{2}^{6}{f(x)dx=10}$
Ta có: $\int\limits_{3}^{6}{\text{ }\!\![\!\!\text{ }3g(x)-f(x)\text{ }\!\!]\!\!\text{ }dx=3\int\limits_{3}^{6}{g(x)dx}-\int\limits_{3}^{6}{f(x)dx}=15-7=8}$ $\int\limits_{2}^{3}{\text{ }\!\![\!\!\text{ }3f(x)-4\text{ }\!\!]\!\!\text{ }dx=3\int\limits_{2}^{3}{f(x)dx}-4\int\limits_{2}^{3}{dx}=9-4=5}$
$\int\limits_{2}^{\ln {{e}^{6}}}{\text{ }\!\![\!\!\text{ 2}f(x)-1\text{ }\!\!]\!\!\text{ }dx=\int\limits_{2}^{6}{\text{ }\!\![\!\!\text{ 2}f(x)-1\text{ }\!\!]\!\!\text{ }dx}=2\int\limits_{2}^{6}{f(x)dx}-1\int\limits_{2}^{6}{dx}=20-4=16}$
$\int\limits_{3}^{\ln {{e}^{6}}}{\text{ }\!\![\!\!\text{ 4}f(x)-2g(x)\text{ }\!\!]\!\!\text{ }dx=\int\limits_{3}^{6}{\text{ }\!\![\!\!\text{ 4}f(x)-2g(x)\text{ }\!\!]\!\!\text{ }dx}=4\int\limits_{3}^{6}{f(x)dx}-2\int\limits_{3}^{6}{g(x)dx}=28-10=18}$
Ta có $\int\limits_{-5}^{7}{f\left( x \right)dx}=\int\limits_{-5}^{0}{f\left( x \right)dx}+\int\limits_{0}^{5}{f\left( x \right)dx}+\int\limits_{5}^{7}{f\left( x \right)dx}$
$\Leftrightarrow 4=I+12\Rightarrow I=-8$
\(\int\limits_{0}^{2}{\left[ 2f\left( x \right)-g\left( x \right) \right]}dx=2\int\limits_{0}^{2}{f\left( x \right)}dx-\int\limits_{0}^{2}{g\left( x \right)}dx=2.4+2=10\)
$\int\limits_{a}^{b}{\left[ f\left( x \right)+g\left( x \right) \right]dx}=\int\limits_{a}^{b}{f\left( x \right)d\text{x}}+\int\limits_{a}^{b}{g\left( x \right)dx}=-4-15=-19$
Sử dụng tính chất nguyên hàm trong SGK ta được $\int\limits_{a}^{b}{f(x)dx=-\int\limits_{b}^{a}{f(x)dx}}$ nên
$\int\limits_{a}^{b}{f(x)dx=\int\limits_{b}^{a}{f(x)dx}}$ là sai.
\(\int\limits_{0}^{1}{\left[ 1000f\left( x \right)+g\left( x \right) \right]dx}=1000\int\limits_{0}^{1}{f\left( x \right)}dx+\int\limits_{0}^{1}{g\left( x \right)}dx=1000+1017=2017\)
Ta có \(\int\limits_{1}^{2}{\dfrac{f\left( 3x \right)}{3x}dx}=\dfrac{1}{3}\int\limits_{1}^{2}{\dfrac{f\left( 3x \right)}{x}dx}=4\Rightarrow \int\limits_{1}^{2}{\dfrac{f\left( 3x \right)}{x}dx}=12\)
Ta có \(\int\limits_{a}^{c}{f\left( x \right)d\text{x}}=\int\limits_{a}^{b}{f\left( x \right)d\text{x}}+\int\limits_{b}^{c}{f\left( x \right)d\text{x}}=-5+2=-3\)
Có \(\left| x-1 \right|=\left\{ \begin{align}
& x-1,x\in \left[ 1;2 \right] \\
& 1-x,x\in \left[ 0;1 \right] \\
\end{align} \right.\)$\Rightarrow \int\limits_{0}^{2}{\left| x-1 \right|d\text{x}}=\int\limits_{0}^{1}{\left( 1-x \right)d\text{x}}+\int\limits_{1}^{2}{\left( x-1 \right)d\text{x}}$