Loại 1: Tính \[I =\int\limits_\alpha ^\beta {\dfrac{{dx}}{{{{\left( {ax + b} \right)}^k}}}} = \dfrac{1}{a}\int\limits_\alpha ^\beta {{{\left( {ax + b} \right)}^{ - k}}.adx} = \dfrac{1}{{a\left( {1 - k} \right)}}.{\left( {ax + b} \right)^{ - k + 1}}\left| {_\alpha ^\beta } \right.\]
Loại 2: Tính \[I=\int\limits_\alpha ^\beta {\dfrac{{dx}}{{a{x^2} + bx + c}}\left( {a \ne 0} \right)} \]
+Nếu $\Delta>0$
$\dfrac{1}{a{{x}^{2}}+bx+c}=\dfrac{1}{a(x-{{x}_{1}})(x-{{x}_{2}})}=\dfrac{1}{a({{x}_{1}}-{{x}_{2}})}\left(\dfrac{1}{x-{{x}_{1}}}-\dfrac{1}{x-{{x}_{2}}} \right)$
thì \[I=\dfrac{1}{a({{x}_{1}}-{{x}_{2}})}\int\limits_{\alpha }^{\beta }{\left( \dfrac{1}{x-{{x}_{1}}}-\dfrac{1}{x-{{x}_{2}}}\right)}dx=\dfrac{1}{a({{x}_{1}}-{{x}_{2}})}\left[ \ln \left| x-{{x}_{1}} \right|-\ln \left| x-{{x}_{2}} \right| \right]\left| _{\alpha }^{\beta}= \right.\dfrac{1}{a({{x}_{1}}-{{x}_{2}})}\ln \left| \dfrac{x-{{x}_{1}}}{x-{{x}_{2}}} \right|\left| _{\alpha }^{\beta } \right.\]
+Nếu $\Delta=0:$
$ \dfrac{1}{a{{x}^{2}}+bx+c}=\dfrac{1}{a{{(x-{{x}_{0}})}^{2}}}\quad \left( {{x}_{0}}=\dfrac{-b}{2a} \right)$
thìI=\[\int\limits_{\alpha }^{\beta }{\dfrac{dx}{a{{x}^{2}}+bx+c}=}\dfrac{1}{a}\int\limits_{\alpha }^{\beta }{\dfrac{dx}{{{(x-{{x}_{0}})}^{2}}}=-\dfrac{1}{a(x-{{x}_{0}})}\left| _{\alpha }^{\beta } \right.}\]
+Nếu $\Delta <0:$
$I=\dfrac{1}{a}\int\limits_{\alpha }^{\beta }{\dfrac{dx}{{{(x+m)}^{2}}+{{n}^{2}}}}$;ta đổi biến số:$x+m=n\tan t$
$ \int\limits_{\dfrac{1}{3}}^{1}{\dfrac{x-5}{2x+2}dx}=\int\limits_{\dfrac{1}{3}}^{1}{\dfrac{x+1-6}{2x+2}dx}=\int\limits_{\dfrac{1}{3}}^{1}{\left( \dfrac{1}{2}-\dfrac{3}{x+1} \right)dx=\left( \dfrac{1}{2}x-3\ln \left| x+1 \right| \right)\left| \begin{array}{l} & ^{1} \\ & _{\dfrac{1}{3}} \end{array} \right.} $
$ =\dfrac{1}{2}-3\ln 2-\dfrac{1}{6}+3\ln \dfrac{4}{3}=\dfrac{1}{3}+3\ln \dfrac{2}{3}=\dfrac{1}{3}+\ln \dfrac{8}{27}\Rightarrow \left\{ \begin{array}{l} & a=\dfrac{1}{3} \\ & b=\dfrac{8}{27} \end{array} \right.\Rightarrow ab=\dfrac{8}{81} $
$ \int\limits_{0}^{2}{\dfrac{2}{2x+1}}dx=\int\limits_{0}^{2}{\dfrac{2}{2x+1}}d\left( 2x+1 \right)=\ln \left| 2x+1 \right|\mathop{|}_{0}^{2}=\ln 5 $.
Ta có: $ \int\limits_ 0 ^ 2 {\dfrac{ d x}{x+3}}=\ln \left| x+3 \right|\left| \begin{align} & ^ 2 \\ & _ 0 \\ \end{align} \right.=\ln 5-\ln 3=\ln \dfrac{5}{3} $ .