Tìm giá trị nhỏ nhất $\Large m$ của hàm số $\Large y=x^3-3x^2$ trên [-

Tìm giá trị nhỏ nhất $\Large m$ của hàm số $\Large y=x^3-3x^2$ trên [-

4.2/5

Tác giả: Thầy Tùng

Đăng ngày: 18 Aug 2022

Lưu về Facebook:

Câu hỏi:

Tìm giá trị nhỏ nhất $\Large m$ của hàm số $\Large y=x^3-3x^2$ trên [-1; 1].

Đáp án án đúng là: A

Lời giải chi tiết:

Chọn A
Ta có: $\Large f'(x)=3x^2-6x$;

$\Large f'(x)=0$ $\Large \Leftrightarrow \left[\begin{align} & x=0 (tm) \\ & x=2 (l) \end{align}\right.$

Trên đoạn [-1; 1] ta có

$\Large f(-1)=-4$; $\Large f(0)=0$; $\Large f(1)=-2$.

Do đó $\Large m=\underset{x\in [-1; 1]}{min}f(x)=-4$.