Số giao điểm của đường cong $\Large y = x^{3} - 2x^{2} + x -1$ và đườn

Số giao điểm của đường cong $\Large y = x^{3} - 2x^{2} + x -1$ và đườn

4/5

Tác giả: Thầy Tùng

Đăng ngày: 18 Aug 2022

Lưu về Facebook:

Câu hỏi:

Số giao điểm của đường cong $\Large y = x^{3} - 2x^{2} + x -1$ và đường thẳng $\Large y = 1-2x$ là:

Đáp án án đúng là: A

Lời giải chi tiết:

Ta có: Số giao điểm của đường cong $\Large  y = x^{3} - 2x^{2} + x -1$ và đường thẳng $\Large  y = 1-2x$ là số nghiệm của phương trình: $\Large x^{3} - 2x^{2} +x-1 = 1-2x \Leftrightarrow x^{3} - 2x^{2} + 3x -2 = 0 \Leftrightarrow x = 1$

Vậy số giao điểm của đường cong $\Large  y = x^{3} - 2x^{2} + x -1$ và đường thẳng $\Large  y = 1-2x$ là 1