MỤC LỤC
Ở mặt nước, một nguồn sóng đặt tại điểm O dao động điều hòa theo phương thẳng đứng. Sóng truyền trên mặt nước có bước sóng 5 cm, M và N là hai điểm trên mặt nước mà phần tử nước ở đó dao động cùng pha với nguồn. Trên các đoạn OM, ON và MN có số điểm mà phần tử nước ở đó dao động ngược pha với nguồn lần lượt là 5, 3 và 3. Độ dài đoạn MN có giá trị gần nhất với giá trị nào sau đây?
Lời giải chi tiết:
Phương pháp:
Khi sóng truyền trên mặt nước, hai điểm dao động cùng pha khi khoảng cách giữa chúng là $\Large d=k \lambda$
Hai điểm dao động ngược pha khi khoảng cách giữa chúng là $\Large d=(k+0,5) \lambda$
Áp dụng hệ thức lượng trong tam giác.
Lời giải:
Vì M dao động cùng pha với nguồn, giữa M với O có 5 điểm ngược pha nên: $\Large O M=5 \lambda=25 cm$
Vì N dao động cùng pha với nguồn, giữa N và O có 3 điểm ngược pha nên: $\Large O N=3 \lambda=15 cm$
Các đường nét liền thể hiện cho các điểm dao động cùng pha và các đường nét đứt thể hiện cho các đường dao động ngược pha.
Để trên MN có 3 điểm dao động ngược pha, thì H là chân đường cao kẻ từ 0 xuống MN và là điểm dao động ngược pha với nguồn nên: $\Large O H=2,5 \lambda=12,5 cm$
Vậy độ dài đoạn MN là:
$\Large M N=\sqrt{O M^{2}-O H^{2}}+\sqrt{O N^{2}-O H^{2}}=\sqrt{25^{2}-12,5^{2}}+\sqrt{15^{2}-12,5^{2}}=29,9 cm$
$\Large \rightarrow$ Gần nhất với giá trị 31 cm.
Chọn C.
Xem thêm các bài tiếp theo bên dưới