Cho <span class="MathJax_Preview" style="color: inherit;"><span class="MJXp-math" id="MJXp-Span-1"><span class="MJXp-mstyle" id="MJXp-Span-2"><span class="MJXp-mn" id="MJXp-Span-3">0</span><span class="MJXp-mo" id="MJXp-Span-4" style="margin-left: 0.333em; margin-right: 0.333em;">≤</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-5">x</span><span class="MJXp-mo" id="MJXp-Span-6" style="margin-left: 0em; margin-right: 0.222em;">,</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-7">y</span><span class="MJXp-mo" id="MJXp-Span-8" style="margin-left: 0.333em; margin-right: 0.333em;">≤</span><span class="MJXp-mn" id="MJXp-Span-9">1</span></span></span></span><span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML MJXc-processed" tabindex="0" style="font-size: 127%;"><span id="MJXc-Node-1" class="mjx-math"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mstyle"><span id="MJXc-Node-4" class="mjx-mrow" style="font-size: 144%;"><span id="MJXc-Node-5" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.396em; padding-bottom: 0.347em;">0</span></span><span id="MJXc-Node-6" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.347em; padding-bottom: 0.495em;">≤</span></span><span id="MJXc-Node-7" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.199em; padding-bottom: 0.298em;">x</span></span><span id="MJXc-Node-8" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="margin-top: -0.145em; padding-bottom: 0.544em;">,</span></span><span id="MJXc-Node-9" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.199em; padding-bottom: 0.495em; padding-right: 0.006em;">y</span></span><span id="MJXc-Node-10" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.347em; padding-bottom: 0.495em;">≤</span></span><span id="MJXc-Node-11" class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.396em; padding-bottom: 0.347em;">1</span></span></span></span></span></span></span><script type="math/tex" id="MathJax-Element-1">\Large 0\leq x, y\leq 1</script> thỏa mãn $\Large \dfrac{2018^{1-x}}{2018

Cho 0x,y10x,y1 thỏa mãn $\Large \dfrac{2018^{1-x}}{2018

4.2/5

Tác giả: Thầy Tùng

Đăng ngày: 18 Aug 2022

Lưu về Facebook:

Câu hỏi:

Cho 0x,y10x,y1 thỏa mãn 20181x2018y=x2+2019y22y+202020181x2018y=x2+2019y22y+2020. Gọi M, m lần lượt là GTLN, GTNN của biểu thức P=(4x2+3y)(4y2+3x)+25xyP=(4x2+3y)(4y2+3x)+25xy, khi đó M + m bằng bao nhiêu?

Đáp án án đúng là: A

Lời giải chi tiết:

Chọn A

20181x2018y=x2+2019y22y+202020181x2018y=x2+2019(y1)2+201920181y2018x=x2+2019(y1)2+2019

2018x(x2+2019)=20181y((1y)2+2019) (1)

Xét hàm số:

y=f(t)=2018t(t2+2019),t[0;1]

y=f(t)=2018t.ln2018(t2+2019)+2t.2018t=2018t.(t2ln2018+2t+2019.ln2018)>0,t[0;1]

hàm số đồng biến trên đoạn [0; 1]

Phương trình (1) trở thành f(x)=f(1y)x=1yx+y=1

Ta có:

P=(4x2+3y)(4y2+3x)+25xy=16x2y2+12x3+12y3+9xy+25xy

=16x2y2+12[(x+y)33xy(x+y)]+34xy=16x2y2+1236xy+34xy=16x2y22xy+12

Với x,y[0;1],x+y=10xy14

Đặt xy=z,z[0;14], ta có: P=g(z)=16z22z+12,g(z)=32z2=0z=116

g(0)=12,g(116)=19116,g(14)=252M=252,m=19116M+m=39116