MỤC LỤC
Biết $\Large \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{{{x}^{2}}dx}{{{(x\sin x+\cos x)}^{2}}}=-\dfrac{a\pi }{b+c\pi \sqrt{3}}+d\sqrt{3}}$, với $\Large a,b,c,d$ là các số nguyên dương. Tính $\Large P=a+b+c+d$
Lời giải chi tiết:
Đặt $\Large I=\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{{{x}^{2}}dx}{{{\left( x\sin x+\cos x \right)}^{2}}}}$
$\Large =\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{{{x}^{2}}({{\tan }^{2}}x+1)}{{{(x\tan x+1)}^{2}}}dx}$
$\Large =\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{{{x}^{2}}{{\tan }^{2}}x+2x\tan x+1-2x\tan x-2+1+{{x}^{2}}}{{{(x\tan x+1)}^{2}}}dx}$
$\Large =\int\limits_{0}^{\dfrac{\pi }{3}}{\left[ 1-\dfrac{2}{x\tan x+1}+\dfrac{{{x}^{2}}+1}{{{(x\tan x+1)}^{2}}} \right]dx}$
Xét tích phân $\Large K=\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{{{x}^{2}}+1}{{{(x\tan x+1)}^{2}}}dx}$
Đặt $\Large \left\{ \begin{align} & u={{x}^{2}}+1\Rightarrow du=2xdx \\ & dv=\dfrac{1}{{{(x\tan x+1)}^{2}}}dx\Rightarrow v=\dfrac{\tan x}{x\tan x+1} \\ \end{align} \right.$
$\Large K=({{x}^{2}}+1).\dfrac{\tan x}{x\tan x+1}\left| \begin{align} & \dfrac{\pi }{3} \\ & 0 \\ \end{align} \right.$ $\Large -\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{2x\tan x}{x\tan x+1}dx=}$ $\Large ({{x}^{2}}+1).\dfrac{\tan x}{x\tan x+1}\left| \begin{align} & \dfrac{\pi }{3} \\ & 0 \\ \end{align} \right.-\int\limits_{0}^{\dfrac{\pi }{3}}{\left( 2-\dfrac{2}{x\tan x+1} \right)dx}$
$\Large \Rightarrow I=-\dfrac{\pi }{3}+\left( \dfrac{{{\pi }^{2}}}{9}+1 \right)\dfrac{\sqrt{3}}{\dfrac{\pi }{3}.\sqrt{3}+1}=\dfrac{-\pi +3\sqrt{3}}{\pi \sqrt{3}+3}=-\dfrac{4\pi }{3+\pi \sqrt{3}}+\sqrt{3}$
$\Large \Rightarrow a=4;b=3;c=1;d=1\Rightarrow P=9$
Xem thêm các bài tiếp theo bên dưới