A3+B3=(A+B)(A2+AB+B2)A3+B3=(A+B)(A2+AB+B2)
Ví dụ:
(x+1)3+8=(x+1)3+23=(x+1+2)[(x+1)2−(x+1).2+22]=(x+3)(x2+2)
A3−B3=(A−B)(A2+AB+B2)
Ví dụ: x3−(2y)3=(x−2y)(x2+2xy+4y2)
Ta có
x3−(2x+1)3=x+1⇔(x−2x−1)[x2+x(2x+1)+(2x+1)2+1]=0⇔−x−1=0⇔x=−1
Ta có
T=(x−y)3+(y+x)3+(y−x)3−3xy(x+y)=x3−3x2y+3xy2−y3+y3+3xy2+3x2y+x3+y3−3xy2+3x2y−x3−3x2y−3xy2=x3+y3
Ta có
a3+b3=(a3+3a2b+3ab2+b3)−(3a2b+3ab2)=(a+b)3−3ab(a+b)
Vậy với a+b=1⇒a3+b3=1−3ab
Ta có
a3−b3=(a3−3a2b+3ab2−b3)+(3a2b−3ab2)=(a−b)3+3ab(a−b)
Vậy với a−b=1⇒a3−b3=1+3ab
Ta có M=(2x+3)(4x2−6x+9)−4(2x3−3)
=(2x+3)[(2x)2−2x.3+32]−8x3+12
=(2x)3+33−8x3+12=8x3+27−8x3+12=39 .
Vậy giá trị của M là một số lẻ.
Ta có (a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b)⇒a3+b3=(a+b)3−3ab(a+b)
Từ đó B=a3+b3+c3−3abc=(a+b)3−3ab(a+b)+c3−3abc
=[(a+b)3+c3]−3ab(a+b+c)
=(a+b+c)[(a+b)2−(a+b)c+c2]−3ab(a+b+c)
Mà a+b+c=0 nên B=0.[(a+b)2−(a+b)c+c2]−3ab.0=0
Vậy B=0 .
Ta có A=x3−3x2+3x=x3−3x2+3x−1+1=(x−1)3+1
Thay x=1001 vào A=(x−1)3+1 ta được A=(1001−1)3+1 suy ra A=10003+1 .
Ta có (x+2)(x2−2x+4)−x(x2−2)=14
⇔x3+23−(x3−2x)=14⇔x3+8−x3+2x=14
⇔2x=6⇔x=3 .
Vậy x=3 .
Ta có
(x2+3)(x4+9−3x2)−4x3−23=(x2)3+33−4x3−23=x6−4x3+4=(x3)2−2.x3.2+22=(x3−2)2
Ta có
(x+3)(x2−3x+9)−x(x−2)(x+2)=15⇔x3+27−x(x2−4)=15⇔x3+27−x3+4x=15⇔4x=−12⇔x=−3
Ta có x3+3x2+3x+1=0⇔(x+1)3=0
⇔x+1=0⇔x=−1 .
Vậy x=−1 .
(3x+2y)(9x2−6xy+4y2)−(3x−2y)(9x2+6xy+4y2)
=(3x+2y)[(3x)2−3x.2y+(2y)2]−(3x−2y)[(3x)2+3x.2y+(2y)2]
=[(3x)3+(2y)3]−[(3x)3−(2y)3]
=(3x)3+(2y)3−(3x)3+(2y)3=16y3
Ta có
27x3−a3b3=(3x)3−(ab)3=(3x−ab)(9x2+3xab+a2b2)
Ta có E=(x+1)(x2−x+1)−(x−1)(x2+x+1)=x3+1−(x3−1)=x3+1−x3+1=2
Vậy E=2 .
Ta có
(x+3)(x2−3x+9)−(30+2x+x3)=(x+3)(x2−3x+32)−(30+2x+x3)
=x3+33−(30+2x+x3)
=−3−2x