Bài tập toán 8 tuần 3 có lời giải chi tiết

Bài tập toán 8 tuần 3 có lời giải chi tiết

4.7/5

Tác giả: Thầy Tùng

Đăng ngày: 22 Aug 2022

Lưu về Facebook:
Hình minh họa Bài tập toán 8 tuần 3 có lời giải chi tiết

Công thức toán học không thể tải, để xem trọn bộ tài liệu hoặc in ra làm bài tập, hãy tải file word về máy bạn nhé

PHIẾU BÀI TẬP TOÁN 8 TUẦN 03

Bài 1. Tìm , biết

a) . b) . c) .

d) . e) .

Bài 2. a) Chứng minh rằng, nếu: thì .

b) Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào : .

Bài 3. Cho tam giác . Gọi là trung điểm của , là trung điểm của . Tia cắt ở . Qua kẻ đường thẳng song song với cắt ở . Chứng minh rằng :

a) .

b) .

Bài 4. Cho tam giác (). Trên cạnh lấy điểm sao cho . Gọi , , lần lượt là trung điểm các đoạn thẳng , và . Chứng minh rằng :

a) Tam giác là tam giác cân.

b) .

Bài 5. Cho hình thang vuông có . Gọi , lần lượt là trung điểm của các cạnh , . Chứng mính rằng:

a) là tam giác cân.

b) .

Bài 6. Cho tam giác . Gọi , , theo thứ tự là trung điểm của các cạnh , , . Tính chu vi của tam giác , biết cm, m, m.

Bài 7. Cho hình thang vuông có . Gọi là trung điểm của . Chứng minh .

B. BÀI TẬP NÂNG CAO (DÀNH THÊM CHO LỚP M VÀ KHUYẾN KHÍCH HỌC SINH CÁC LỚP KHÁC)

Bài 8. Chứng minh rằng các bất đẳng thức sau luôn đúng với mọi giá trị của ,

a)

b)

c)

Bài 9. Cho hình thang Gọi lần lượt là trung điểm và . Đường thẳng cắt ở , cắt ở .

  1. Chứng minh : ; .
  2. Cho , . Tính

ĐÁP ÁN BÀI TẬP TĂNG CƯỜNG TOÁN 8

TUẦN 3

Bài 1. Tìm , biết

a) . b) . c) .

d) . e) .

Lời giải

a) .

b) .

c) .

d) .

.

e) .

Bài 2. a) Chứng minh rằng, nếu: thì .

b) Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào : .

Lời giải

a) Ta có:

Vì .

b)

vậy biểu thức sau không phụ thuộc vào .

Bài 3. Cho tam giác . Gọi là trung điểm của , là trung điểm của . Tia cắt ở . Qua kẻ đường thẳng song song với cắt ở . Chứng minh rằng :

a) .

b) .

Lời giải

a) Chứng minh : .

Tam giác là trung điểm của ; nên là đường trung bình của tam giác . Suy ra . (1)

Tam giác là trung điểm của ; nên là đường trung bình của tam giác . Suy ra . (2)

Từ (1) và (2) suy ra . Đpcm

b) Chứng minh: .

Do là đường trung bình của tam giác . Suy ra . (3)

Do là đường trung bình của tam giác . Suy ra . (4)

Suy ra . Đpcm

Bài 4. Cho tam giác (). Trên cạnh lấy điểm sao cho . Gọi , , lần lượt là trung điểm các đoạn thẳng , và . Chứng minh rằng :

a) Tam giác là tam giác cân.

b) .

Lời giải

a) Tam giác là tam giác cân.

Tam giác là trung điểm của , là trung điểm của nên là đường trung bình của tam giác . Suy ra .

Tam giác là trung điểm của , là trung điểm của nên là đường trung bình của tam giác . Suy ra .

Theo bài ra , suy ra . Suy ra tam giác cân tại . Đpcm

b) .

Do là đường trung bình của tam giác nên . Suy ra (so le trong)

Mặt khác (do tam giác cân tại ). Suy ra .

Suy ra .

Do là đường trung bình của tam giác nên . Suy ra (đồng vị)

Suy ra . Đpcm

Bài 5. Cho hình thang vuông có . Gọi , lần lượt là trung điểm của các cạnh , . Chứng mính rằng:

a) là tam giác cân.

b)

Lời giải

a) Theo đề ta ta có , lần lượt là trung điểm của , nên là đường trung bình của hình thang

Xét có vừa là đường cao vừa là đường trung tuyến.

cân tại M

b) Ta có là tam giác cân tại M, suy ra

Mà và

Suy ra (đpcm).

Bài 6. Cho tam giác . Gọi , , theo thứ tự là trung điểm của các cạnh , , . Tính chu vi của tam giác , biết cm, m, m.

Lời giải

Ta có , , theo thứ tự là trung điểm của các cạnh , , nên , , là 3 đường trung bình của tam giác .

Áp dụng tính chất đường trung bình của tam giác ta có:

(m)

(m)

(m)

Chu vi hình tam giác là: (m)

Bài 7. Cho hình thang vuông có . Gọi là trung điểm của . Chứng minh .

Lời giải

Kẻ .

Ta có: (gt)

(gt)

Mà là trung điểm của (gt)

(tc đường trung bình)

Xét và có:

(cmt)

chung

(c.g.c)

(góc tương ứng) (1)

Ta có: (cmt) (so le trong) (2)

Lại có: (cmt) (so le trong) (3)

Từ (1), (2) và (3) (đpcm)

B. BÀI TẬP NÂNG CAO (DÀNH THÊM CHO LỚP M VÀ KHUYẾN KHÍCH HỌC SINH CÁC LỚP KHÁC)

Bài 8. Chứng minh rằng các bất đẳng thức sau luôn đúng với mọi giá trị của ,

a)

b)

c)

Lời giải

a) Ta có:

với

b) Ta có:

với

c) Ta có:

với

Bài 9. Cho hình thang Gọi lần lượt là trung điểm và . Đường thẳng cắt ở , cắt ở .

  1. Chứng minh : ; .
  2. Cho , . Tính

Lời giải

GT

Cho hình thang ABCD (AB CD).

E là trung điểm AD : EA = ED.

F là trung điểm BC : FB = FC.

EF BD tại I.

EF AC tại K.

KL

a)Chứng minh : AK = KC ; BI = ID.

b)Cho AB = 6, CD = 10. Tính EI, KF, IK.

a)Xét hình thang có:

là đường trung bình của hình thang (định nghĩa đường trung bình của hình thang) (*)

Mà tại (gt); tại (gt)

Xét tam giác ABD có:

( định lý 1 đường trung bình của tam giác) (đpcm)

Xét tam giác ABC có:

( định lý 1 đường trung bình của tam giác) (đpcm)

b)Xét tam giác ABD có:

là đường trung bình của tam giác ABD (đ/n đường trung bình của tam giác)

Xét tam giác ABC có:

FK là đường trung bình của tam giác ABC (đ/n đường trung bình của tam giác)

(định lý 2 đường trung bình của tam giác)

Có EF là đường trung bình của hình thang ABCD (theo *)

(định lý 2 đường trung bình của tam giác)

Mà: (theo 3); (theo 1); FK = 3 (theo 2)

IK = 2.