Công thức toán học không thể tải, để xem trọn bộ tài liệu hoặc in ra làm bài tập, hãy tải file word về máy bạn nhé
ĐỀ 1 Thuvienhoclieu.Com | ĐỀ ÔN TẬP CHƯƠNG KHỐI ĐA DIỆN HÌNH HỌC 12 |
Câu 1: Khối hộp chữ nhật có 3 cạnh xuất phát từ một đỉnh lần lượt có độ dài .
Thể tích của khối hộp chữ nhật.
A. B. C. D.
Câu 2: Tìm số cạnh ít nhất của hình đa diện có 5 mặt.
A. 6 cạnh. B. 7 cạnh. C. 8 cạnh. D. 9 cạnh
Câu 3: Trong một khối đa diện, mệnh đề nào sau đây đúng ?
A. Hai cạnh bất kì có ít nhất một điểm chung. B. Hai mặt bất kì có ít nhất một điểm chung.
C. Mỗi đỉnh là đỉnh chung của ít nhất 3 mặt. D. Hai mặt bất kì có ít nhất một cạnh chung.
Câu 4: Trong các phát biểu sau, phát biểu nào đúng ?
A. Hình lăng trụ đều là hình lăng trụ đứng có đáy là đa giác đều.
B. Hình lăng trụ đều là hình lăng trụ có tất cả các cạnh bằng nhau.
C. Hình lăng trụ đều là hình lăng trụ có đáy là đa giác đều và các cạnh bên bằng nhau.
D. Hình lăng trụ đều là hình lăng trụ có tất cả các mặt là đa giác đều.
Câu 5: Các khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh và số cạnh của các khối đa diện đó luôn thỏa mãn điều kiện nào?
Câu 6: Cho hình chóp có đáy là hình vuông cạnh và vuông góc với mặt phẳng đáy. Gọi là trung điểm của là hình chiếu vuông góc của lên Tính thể tích của khối chóp
Câu 7: Cho hình chóp đều có cạnh đáy bằng khoảng cách giữa hai đường thẳng và bằng Thể tích của khối chóp
A. B. C. D.
Câu 8: Cho hình chóp có đáy là tam giác vuông tại Cạnh và vuông góc với mặt phẳng đáy. Thể tích của khối chóp
A. B. C. D.
Câu 9: Cho khối tứ diện , tam giác vuông cân tại , tam giácđều,. Mặt phẳng và vuông góc với nhau. Tính thể tích của khối tứ diện
A. B. C. D.
Câu 10: Cho hình lăng trụ tam giác đều có , đường thẳng tạo với mặt phẳng một góc 300. Tính thể tích của khối lăng trụ đã cho.
A. B. C. D.
Câu 11: Cho hình lăng trụ tam giác có đáy là tam giác đều cạnh hình chiếu của điểm trên mặt phẳng trùng với trung điểm của cạnh Biết tạo với mặt phẳng một góc 450. Tính thể tích của khối đa diện
A. B. C. D.
Câu 12: Cho hình chóp tam giác , có đáyvuông tại, , . Tam giác là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Khi đó thể tích của khối chóp đã cho.
A. B. C. D.
Câu 13: Cho hình chóp tứ giác đều có . Góc giữa đường thẳng với mặt phẳng
A. B. C. D.
Câu 14: Cho hình chóp tứ giác đều có cạnh đáy bằng . là trung điểm của cạnh Góc giữa hai mặt phẳng với bằng:
A. B. C. D.
Câu 15: Cho tứ diện có. Gọi lần lượt là trung điểm của các cạnh và . Gọi là góc giữa hai đường thẳng và . Tính .
A. B. C. D.
Câu 16: Cho hình chóp có đáy là hình vuông cạnh và cạnh bên vuông góc với mặt đáy. Gọi là trung điểm của cạnh Biết thể tích khối chóp bằng . Tính khoảng cách từ điểm đến mặt phẳng
A. B. C. D.
Câu 17: Cho hình chóp có đáy là hình vuông cạnh , vuông góc với mặt phẳng góc giữa đường thẳng và mặt phẳng bằng 450. Tính khoảng cách giữa 2 đường thẳng
A. B. C. D.
Câu 18: Cho hình chóp có Tính khoảng cách từ điểm đến mặt phẳng
A. B. C. D.
Câu 19: Cho khối chóp có diện tích mặt đáy và thể tích lần lượt là và . Tính độ dài đường cao của hình chóp đã cho.
A. B. C. D.
Câu 20: Cho hình chóp tam giác có đáy là tam giác đều cạnh và Gọi và lần lượt là hình chiếu vuông góc của trên các đường thẳng
và Tính, với là thể tích khối chóp
A.9. B. 10. C. 11. D. 12.
ĐÁP ÁN
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
A | C | C | A | A | D | D | A | B | C | A | C | B | D | B | D | B | C | C | A |
ĐỀ 2 Thuvienhoclieu.Com | ĐỀ ÔN TẬP CHƯƠNG KHỐI ĐA DIỆN HÌNH HỌC 12 |
Câu 1: Cho hình lăng trụ đều có và đường thẳng tạo với đáy một góc . Gọi lần lượt là trung điểm cạnh và . Tính độ dài đoạn thẳng theo .
A. . B. . C. . D. .
Câu 2: Tính thể tích khối chóp tam giác đều có cạnh đáy bằng và cạnh bên tạo với mặt đáy góc .
A. . B. . C. . D. .
Câu 3: Cho hình hộp đứng có đáy ABCD là hình thoi cạnh và có góc . Tính khoảng cách giữa đường thẳng DC và mặt phẳng .
A. . B. . C. . D. .
Câu 4: Khối lập phương có cạnh bằng thì thể tích là công thức nào?
A. . B. . C. . D. .
Câu 5: Cho khối chóp có đáy là tam giác đều cạnh , và vuông góc với đáy. Gọi lần lượt là hình chiếu vuông góc của lên trên các đường thẳng và . Tính thể tích khối chóp theo .
A. . B. . C. . D. .
Câu 6: Cho hình chóp tứ giác đều có cạnh đáy bằng , tâm O. Gọi M và N lần lượt là trung điểm của SA và BC. Biết rằng góc giữa MN và bằng , tính độ dài đoạn MN.
A. . B. . C. . D. .
Câu 7: Cho hình lăng trụ đều có cạnh đáy bằng , hợp với mặt phẳng một góc . Tính thể tích của khối lăng trụ tính theo .
A. B. C. D.
Câu 8: Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh , cạnh SA vuông góc với mặt đáy. Góc giữa đường thẳng SC và mặt phẳng là , gọi G là trọng tâm tam giác SCD. Tính khoảng cách h giữa hai đường thẳng chéo nhau OG và AD.
A. . B. . C. . D. .
Câu 9: Hình mười hai mặt đều có bao nhiêu đỉnh?
A. 30. B. 20. C. 16. D. 12.
Câu 10: Cho hình chóp có đáy là tam giác đều cạnh . Hình chiếu của S trên thuộc cạnh AB sao cho, biết mặt bên hợp với đáy một góc . Tính thể tích khối chóp .
A. B. C. D.
Câu 11: Hình lăng trụ đều là hình như thế nào?
A. Lăng trụ có tất cả các cạnh bằng nhau.
B. Lăng trụ có đáy là tam giác đều và các cạnh bên bằng nhau.
C. Lăng trụ có đáy là tam giác đều và cạnh bên vuông góc với đáy.
D. Lăng trụ đứng có đáy là đa giác đều.
Câu 12: Cho hình chóp có đáy là tam giác vuông tại . Biết là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng . Tính thể tích khối chóp biết , .
A. B. C. D.
Câu 13: Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng . Góc giữa mặt bên với mặt đáy bằng . Tính khoảng cách từ điểm A đến mặt phẳng .
Câu 14: Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 B. 9 C. 6 D. 7
Câu 15: Mệnh đề nào sau đây đúng?
A. Số cạnh của một hình đa diện luôn nhỏ hơn hoặc bằng số đỉnh của hình đa diện ấy.
B. Số cạnh của một hình đa diện luôn bằng số đỉnh của hình đa diện ấy.
C. Số cạnh của một hình đa diện luôn nhỏ hơn số đỉnh của hình đa diện ấy.
D. Số cạnh của một hình đa diện luôn nhỏ hơn số đỉnh của hình đa diện ấy.
Câu 16: Cho hình chóp có đáy là hình vuông cạnh . Tam giác vuông tại S và nằm trong mặt phẳng vuông góc với mặt đáy, đường thẳng tạo với mặt phẳng một góc . Tính góc giữa và .
A. . B. . C. . D. .
Câu 17: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, . Hai mặt phẳng và cùng vuông góc với mặt đáy, khoảng cách từ A đến mặt phẳng là . Tính góc tạo bởi hai đường thẳng SB và AC.
A. . B. . C. . D. .
Câu 18: Cho hình hộp có đáy ABCD là hình thoi cạnh , . Hình chiếu vuông góc của B lên mặt phẳng là trung điểm của . Biết rằng côsin của góc tạo bởi hai mặt phẳng và bằng . Tính thể tích khối hộp .
A. . B. . C. . D. .
Câu 19: Cho khối chóp có đáy là hình vuông cạnh , và vuông góc với đáy, gọi M là trung điểm của SD. Tính thể tích khối tứ diện MACD.
A. . B. . C. . D. .
Câu 20: Cho hình chóp có , đáy là hình chữ nhật. Tính thể tích , biết , , .
A. . B. . C. . D.
----------- HẾT ----------
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
A | ||||||||||||||||||||
B | ||||||||||||||||||||
C | ||||||||||||||||||||
D |
ĐỀ 3 Thuvienhoclieu.Com | ĐỀ ÔN TẬP CHƯƠNG KHỐI ĐA DIỆN HÌNH HỌC 12 |
Câu 1: Mỗi đỉnh của bát diện đều là đỉnh chung của bao nhiêu cạnh ?
A. 3. B. 5. C. 8. D. 4.
Câu 2: Hình đa diện nào dưới đây không có tâm đối xứng?
A. Tứ diện đều. B. Bát diện đều. C. Hình lập phương. D. Lăng trụ lục giác đều.
Câu 3: Khối đa diện đều có 12 mặt thì có bao nhiêu cạnh?
A. 24. B. 12. C. 30. D. 60.
Câu 4: Gọi lần lượt là thể tích của khối lập phương và của khối tứ diện Hệ thức nào sau đây là đúng ?
A. B. C. D.
Câu 5: Số cạnh của một hình hộp chữ nhật bằng ?
A. cạnh. B. cạnh. C. cạnh. D. cạnh.
Câu 6: Cho hình lăng trụ đứng có đáy là hình chữ nhật với và Tính thể tích của khối lăng trụ .
A. B. C. D.
Câu 7: Cho hình chóp lần lượt là trung điểm và Tính thể tích của khối chóp Biết thể tích của khối chóp bằng
A. B. C. D.
Câu 8: Tổng diện tích các mặt của khối lập phương bằng . Tính thể tích của khối lập phương ?
A. B. C. D.
Câu 9:Cho tứ diện có thể tích bằng 12 và là trọng tâm của tam giác Tính thể tích của khối chóp
A. B. C. D.
Câu 10: Cho khối đa diện có cạnh bằng 4 và cùng vuông góc với tứ giác là hình chữ nhật, Khoảng cách từ tới bằng Thể tích của khối đa diện
A. B. C. D. |
Câu 11 : Cho hình chóp có đáy là tam giác vuông cân tại , vuông góc với mặt phẳng đáy . Tính thể tích của khối chóp biết tạo với mặt phẳng một góc
A. B. C. D.
Câu 12: Cho hình lăng trụ tam giác có đáy là tam giác vuông cân tại cạnh Biết tạo với mặt phẳng một góc 600 và Tính thể tích của khối đa diện
A. B. C. D.
Câu 13: Cho hình chóp có đáy là hình thoi cạnh bằng góc bằng 1200. Hai mặt phẳng và cùng vuông góc với đáy. Góc gữa mặt phẳng và bằng 450 . Tính khoảng cách từ điểm đến mặt phẳng
A. B. C. D.
Câu 14: Cho hình chóp có đáy là hình thoi cạnh , Gọi là trung điểm Biết Khoảng cách từ điểm đến mặt phẳng
A. B. C. D.
Câu 15: Cho hình chóp có đáy là hình chữ nhật. Hình chiếu của lên là trung điểm của tam giác vuông cân tại Biết Tính khoảng cách giữa hai đường thẳng và
A. B. C. D.
Câu 16: Cho hình chóp tam giác đều có cạnh bằng Gọi là trọng tâm tam giác Tính cosin của góc tạo bởi cạnh bên và mặt phẳng đáy.
A. B. C. D.
Câu 17: Cho hình chóp có đáy là tam giác vuông cân với và vuông góc với mặt phẳng đáy. Tính côsin góc giữa hai mặt phẳng và
A. B. C. D.
Câu 18: Cho hình chóp tam giác có đáy là tam giác đều cạnh có vuông góc với tam giác cân tại Để thể tích của khối chóp là thì góc giữa hai mặt phẳng và
A. B. C. D.
Câu 19: Cho hình lăng trụ tứ giác có đáy là hình vuông cạnh và thể tích bằng Tính chiều cao của hình lăng trụ đã cho.
A. B. C. D.
Câu 20: Một khối chóp tam giác có ba góc phẳng vuông tại đỉnh, có thể tích và hai cạnh bên bằng . Tính cạnh bên thứ ba của khối chóp đã cho.
A. B. C. D.
ĐÁP ÁN
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
D | A | C | A | D | D | C | B | B | A | B | D | C | D | D | B | A | B | C | D |
ĐỀ 4 Thuvienhoclieu.Com | ĐỀ ÔN TẬP CHƯƠNG KHỐI ĐA DIỆN HÌNH HỌC 12 |
Câu 1: Hình đa diện trong hình vẽ bên có bao nhiêu mặt ?
A. 8. B. 11.
C. 12. D. 10.
Câu 2: Chỉ có 5 loại khối đa diện đều . Đó là :
A. B.
C. D.
Câu 3: Cho một hình đa diện . Tìm khẳng định sai trong các khẳng định sau:
A. Mỗi cạnh là cạnh chung của ít nhất ba mặt
B. Mỗi đỉnh là đỉnh chung của ít nhất ba mặt
C. Mỗi mặt có ít nhất ba cạnh
D. Mỗi đỉnh là đỉnh chung của ít nhất ba cạnh
Câu 4: Mệnh đề nào sau đây sai?
A. Khối chóp và khối lăng trụ là các khối đa diện.
B. Mỗi cạnh của hình đa diện đều là cạnh chung của đúng hai đa giác.
C. Hai hình đa diện gọi là bằng nhau nếu có một phép biến hình biến hình này thành hình kia.
D. Khối đa diện là phần không gian được giới hạn bởi một hình đa diện và kể cả hình đa diện đó.
Câu 5: Khối đa diện đều loại {4; 3} là:
A. Khối đa diện đều 4 cạnh, 3 mặt.
B. Khối đa diện có 3 cạnh và 4 mặt.
C. Khối đa diện đều có 6 mặt, 12 cạnh và 8 đỉnh.
D. Khối đa diện có 12 cạnh, 12 đỉnh và 6 đường chéo.
Câu 6: Cho hình chóp tam giác có đáy là tam giác vuông cân tại với . Biết cạnh bên vuông góc với mặt phẳng đáy và hợp với mặt đáy một góc Tính thể tích của khối chóp
A. B. C. D.
Câu 7: Cho tứ diện có thể tích bằng và là trọng tâm của tam giác là trung điểm Tính thể tích của khối chóp
A. B. C. D.
Câu 8: Cho hình chóp có đáy là tam giác đều cạnh Biết và Tính thể tích của khối chóp
A. B. C. D.
Câu 9: Cho hình lăng trụ có đáy là tam giác đều cạnh Hình chiếu vuông góc của điểm lên mặt phẳng trùng với trọng tâm tam giác Biết khoảng cách giữa hai đường thẳng và bằng Tính thể tích của khối lăng trụ
A. B. C. D.
Câu 10: Cho hình chóp có đáy là tam giáccân tại , và , các mặt bên đều hợp với đáy góc và hình chiếu của trên mặt phẳng nằm trong . Khi đó thể tích khối chóp
A. B. C. D.
Câu 11: Cho lăng trụ đứng có đáy là tam giác vuông cân tại Tính thể tích của khối lăng trụ
A. B. C. D.
Câu 12: Cho hình chóp có đáy là hình thoi cạnh , góc , ,. Gọi là trung điểm của mặt phẳng đi qua và song song cắt các cạnh lần lượt tại và Thể tích khối chóp
A. B. C. . D.
Câu 13: Cho hình chóp có đáy là hình thoi, tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Biết Tính khoảng cách giữa hai đường thẳng và
A. B. C. D.
Câu 14: Cho hình chóp đều có thể tích bằng , có cạnh đáy bằng Khi đó khoảng cách từ điểm đến mặt phẳng
A. B. C. D.
Câu 15: Hình lăng trụ có đáy là tam giác đều Hình chiếu vuông góc của trên nằm trùng với trung điểm Tính theo khoảng cách từ điểm đến mặt phẳng
A. B. C. D.
Câu 16 : Cho hình chóp có đáy là hình vuông cạnh Tìm theo để góc giữa và bằng
A. B. C. D.
Câu 17 : Cho hình chóp có đáy là hình vuông cạnh và Tính với là góc giữa và
A. B. C. D.
Câu 18: Cho hình lập phương. Góc giữa hai đường thẳng và
A. B. C. D.
Câu 19: Khối chóp đều có tất cả các cạnh đều bằng Khi đó độ dài đường cao của khối chóp đã cho.
A. B. C. D.
Câu 20: Cho hình lăng trụ có đáy là tam giác vuông cân có Gọi
là trọng tâm tam giác Biết thể tích của khối chóp bằng Tính chiều cao của hình lăng trụ đã cho.
A. B. C. D.
ĐÁP ÁN
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
D | D | A | C | A | A | C | A | C | D | B | B | A | D | C | B | B | D | B | D |
ĐỀ 5 Thuvienhoclieu.Com | ĐỀ ÔN TẬP CHƯƠNG KHỐI ĐA DIỆN HÌNH HỌC 12 |
Câu 1: Các hình nào dưới đây không phải là khối đa diện?
A. Cả 3 hình trên. B. Hình a) và Hình b).
C. Hình b) và Hình c). D. Hình a) và Hình c).
Câu 2: Cho ba mệnh đề: (I): Khối đa diện đều loại {4; 3} là khối lập phương;
(II): Khối đa diện đều loại {3; 5} là khối hai mươi mặt đều; (III): Khối đa diện đều loại {3; 4} là khối mười mặt đều.
Số mệnh đề đúng trong 3 mệnh đề trên là:
A. 3. B. 0. C. 2. D. 1.
Câu 3: Trong các mệnh đề sau, mệnh đề nào đúng ?
A. Khối mười hai mặt đều có 36 cạnh. B. Khối lập phương có 12 cạnh.
C. Khối bát diện đều có 8 đỉnh. D. Khối hai mươi mặt đều có 20 đỉnh.
Câu 4: Cho khối chóp có đáy là hình vuông tâm Gọi I là trung điểm của Khẳng định nào sau đây đúng?
A. là các điểm ngoài của khối chóp
B. là điểm trong của khối chóp
C. là các điểm ngoài của khối chóp
D. là điểm trong của khối chóp
Câu 5: Cho khối chóp có đáy là hình bình hành. Xét các mệnh đề:
(I) Khối chóp có thể phân chia thành hai khối chóp và
(II) Khối chóp có có thể phân chia thành hai khối chóp và
Mệnh đề nào đúng?
A. Cả (I) và (II) đều sai. B. (I) đúng, (II) sai.
C. Cả (I) và (II) đều đúng. D. (I) sai, (II) đúng.
Câu 6: Hình chóp có đáy là hình vuông cạnh vuông góc với mặt phẳng đáy, Tính thể tích của khối tứ diện
A. B. C. D.
Câu 7: Khối chóp có đáy là hình vuông cạnh Biết vuông góc với mặt đáy, Gọi lần lượt là trung điểm Tính thể tích của khối chóp
A. B. C. D.
Câu 8: Cho khối lăng trụ đứng có thể tích là Gọi là điểm tùy ý trên mặt phẳng Tính thể tích của khối chóp .
A. B. C. D.
Câu 9: Khối hộp đứng đáy là hình thoi cạnh , Thể tích của khối hộp đứng.
A. B. C. D.
Câu 10: Cho hình chóp tứ giác , đáy là hình vuông cạnh a, cạnh bên vuông góc với mặt phẳng đáy và góc giữa và () bằng 450. Thể tích của khối chóp
A. B. C. D.
Câu 11: Cho lăng trụ đứng tam giác có đáy là tam giác vuông cân tại với
biết hợp với mặt phẳng một góc Thể tích của khối lăng trụ đã cho.
A. B. C. D.
Câu 12: Cho hình chóp tam giác có đáy là tam giác vuông cân tại với . Biết cạnh bên vuông góc với mặt phẳng đáy và hợp với mặt đáy một góc Tính thể tích của khối chóp
A. B. C. D.
Câu 13 : Cho hình chóp có đáy là hình vuông tâm cạnh , vuông góc với mặt phẳng và . Khoảng cách giữa và
A. B. C. D.
Câu 14: Cho hình chóp có đáy là tam giác đều cạnh cạnh bên vuông góc với mặt phẳng đáy và Khi đó khoảng cách từ điểm đến mặt phẳng
A. B. C. D.
Câu 15: Cho hình chóp tam giác đều cạnh đáy bằng và đường cao Khoảng cách từ điểm đến mặt phẳng
A. B. C. D.
Câu 16 : Cho hình chóp có đáy là hình thang vuông tại và Biết Tính với là góc giữa và
A. B. C. D.
Câu 17 : Cho hình chóp có đáy là hình vuông cạnh và Tính với là góc giữa và
A. B. C. D.
Câu 18: Cho hình chóp có tất cả các cạnh đều bằng Gọi lần lượt là trung điểm của và Số đo của góc giữa hai đường thẳng và bằng:
A. B. C. D.
Câu 19: Cho biết thể tích của khối chóp bằng , diện tích hình vuông bằng Chiều cao của hình chóp đã cho.
A. B. C. D.
Câu 20: Khối lăng trụ đứng có thể tích và diện tích đáy bằng thì độ dài cạnh bên của nó
A. B. C. D.
ĐÁP ÁN
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
A | C | B | D | B | D | C | A | A | D | A | A | B | B | B | D | B | B | A | D |
ĐỀ 6 Thuvienhoclieu.Com | ĐỀ ÔN TẬP CHƯƠNG KHỐI ĐA DIỆN HÌNH HỌC 12 |
Câu 1: Cho hình chóp có đáy là hình vuông cạnh a, hình chiếu vuông góc H của S lên mặt (ABCD) là trung điểm của đoạn . Gọi K là trung điểm của . Tính khoảng cách giữa hai đường SD và HK theo a
A. B. C. D.
Câu 2: Cho hình lăng trụ đứng có đáy là hình vuông. Biết cạnh bên bằng 4a và đường chéo Tính thể tích khối lăng trụ này là:
A. B. C. D.
Câu 3: Cho tứ diện có Gọi lần lượt là trung điểm của và Biết Góc giữa hai đường thẳng và bằng
A. B. C. D.
Câu 4: Cho hình chóp có đáy là hình chữ nhật, cạnh cạnh bên vuông góc với mặt phẳng đáy Khoảng cách giữa hai đường thẳng bằng
A. B. C. D.
Câu 5: Cho khối lăng trụ đứng . Tam giác ABC đều cạnh a, góc giữa CB’ và đáy bằng 600 . Chiều cao của khối lăng trụ đứng theo a bằng:
A. B. C. a D.
Câu 6: Cho hình chóp có đáylà hình vuông cạnh mặt phẳng vuông góc với mặt phẳng đáy, tam giác đều. Gọi góc giữa hai mặt phẳng và là . Khi đó tan bằng
A. B. C. D.
Câu 7: Cho hình chóp có đáy là hình vuông cạnh a, biết và SA = . Góc giữa đường thẳng SB và mặt phẳng bằng :
A. 600 B. 450 C. 300 D. 900
Câu 8: Khối lập phương có số cạnh bằng:
A. 8 B. 12 C. 6 D. 10
Câu 9: Khi độ dài cạnh của hình lập phương tăng thêm thì thể tích của khối lập phương của nó tăng thêm 152 Cạnh của hình lập phương đã cho là
A. 5 B. 3 C. 4 D. 2
Câu 10: Cho lăng trụ đứng có đáy là tam giác vuông tại A, AC=a, . Đường chéo BC’ của mặt bên (BCC’B’) tạo với mặt phẳng (AA’C’C) một góc . Tính thể tích của khối lăng trụ theo a
A. B. C. D.
Câu 11: Cho hình lăng trụ có đáy ABC là tam giác vuông cân tại A, biết AB=2a . Hình chiếu vuông góc của A’ xuống là trung điểm của BC. Cạnh A’B tạo với mặt phẳng đáy một góc 30o.Tính thể tích khối lăng trụ này
A. B. C. D.
Câu 12: Chọn khẳng định sai. Trong một khối đa diện:
A. Mỗi mặt có ít nhất ba cạnh
B. Mỗi đỉnh là đỉnh chung của ít nhất 3 mặt
C. Mỗi cạnh của một khối đa diện cũng là cạnh chung của đúng 2 mặt
D. Hai mặt bất kỳ luôn có ít nhất một điểm chung
Câu 13: Số đỉnh của hình hai mươi mặt đều là
A. 20 B. 16 C. 12 D. 3
Câu 14: Cho hình chópcó đáy là hình chữ nhật, có AB =, BC = 2a. SA vuông góc với đáy. Góc giữa mặt bên và mặt đáy bằng 600. Tính theo a thể tích khối chóp .
A. B. C. D.
Câu 15: Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba lần thì thể tích khối hộp tương ứng sẽ
A. tăng 27 lần B. tăng 6 lần C. tăng 9 lần D. tăng 3 lần
Câu 16: Cho khối chóp tứ giác đều có cạnh đáy bằng .Góc hợp bởi cạnh bên và mặt đáy bằng .Tính chiều cao SH:
A. B. C. D.
Câu 17: Cho hình chóp có là hình chữ nhật, SAB đều nằm trong mặt phẳng vuông góc với (ABCD) biết , SC tạo với hợp với () một góc 30o .Tính thể tích hình chóp
A. B. C. D.
Câu 18: Cho hình chóp có đáy ABC là tam giác vuông cân tại B với AC = a biết SA vuông góc với đáy ABC và SB hợp với đáy một góc 60o. Tính thể tích hình chóp
A. B. C. D.
Câu 19: Cho hình chóp có đáy ABC là tam giác vuông cân tại A, mặt bên SBC là tam giác đều cạnh a và mặt phẳng (SBC) vuông góc với mặt phẳng đáy. Khoảng cách từ điểm C đến mặt phẳng tính theo a là:
A. B. C. D.
Câu 20: Cho hình chóp tam giác đều có cạnh đáy bằng 3a. Góc giữa mặt bên và mặt đáy bằng 450. Tính theo a thể tích khối chóp .
----------- HẾT ----------
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
A | ||||||||||||||||||||
B | ||||||||||||||||||||
C | ||||||||||||||||||||
D |
ĐỀ 7 Thuvienhoclieu.Com | ĐỀ ÔN TẬP CHƯƠNG KHỐI ĐA DIỆN HÌNH HỌC 12 |
Câu 1: Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông tại A, góc , AB =a. Khoảng cách từ C đến mặt phẳng (ABB’A’) là:
A. B. C. D.
Câu 2: Cho khối chóp SABCD có đáy là hình thoi cạnh a và góc nhọn A bằng 60o và .Biết rằng khoảng cách từ A đến cạnh SC bằng.Tính thể tích khối chóp
A. B. C. D.
Câu 3: Cho biết thể tích của khối chóp bằng diện tích hình vuông bằng .Chiều cao của hình chóp bằng
A. B. C. D.
Câu 4: Cho hình chóp có đáy là tam giác vuông tại B, góc giữa mặt bên và mặt phẳng đáy bằng ,, , gọi G là trọng tâm tam giác SAB. Khoảng cách từ điểm G đến mặt phẳng (SBC) bằng
A. B. C. D.
Câu 5: Cho hình chóp có đáy là hình chữ nhật, , mặt phẳng vuông góc với mặt phẳng đáy , tam giác đều. Gọi góc giữa hai mặt phẳng và là . Khi đó tan bằng
A. B. C. D.
Câu 6: Cho hình chóp có đáy là hình vuông cạnh a, biết và . Góc giữa hai đường thẳng và bằng :
A. B. C. D.
Câu 7: Cho khối chóp trên cạnh SC lấy điểm N sao cho . Gọi , lần lượt là thể tích của hai khối chóp S.ABN và S.ABC. Tỷ số là:
A. B. C. D.
Câu 8: Chỉ có 5 loại khối đa diện đều. Đó là :
A. {3; 3}, {4; 3}, {3; 4}, {5; 3}, {3; 5} B. {3; 3}, {4; 3}, {3; 4}, {5; 3},
C. {3; 3}, {4; 5}, {3; 4}, {5; 3}, {3; 5} D. {3; 3}, {4; 3}, {3; 4}, {5; 3}, {3; 6}
Câu 9: Số đỉnh của một hình bát diện đều là:
A. 10 B. 6 C. 8 D. 12
Câu 10: Cho hình hộp đứng có đáy là hình thoi cạnh , góc , . Khi đó thể tích của khối hộp đã cho là:
A. B. C. D.
Câu 11: Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng . Góc giữa cạnh bên và mặt đáy bằng 300. Tính theo a thể tích khối chóp S.ABC.
A. B. C. D.
Câu 12: Cho khối chóp tứ giác có đáy là hình vuông cạnh a và có chiều cao h, thể tích khối chóp bằng
A. B. C. D.
Câu 13: Mỗi đỉnh hình đa diện là đỉnh chung ít nhất :
A. Hai mặt B. Bốn mặt C. Ba mặt D. Năm mặt
Câu 14: Cho hình chóp tứ giác có đáy là hình chữ nhật , và góc giữa đường thẳng và mặt phẳng đáy bằng . Thể tích của khối chóp bằng
A. B. C. D.
Câu 15: Khi độ dài cạnh của hình lập phương tăng thêm thì thể tích của khối lập phương của nó tăng thêm Cạnh của hình lập phương đã cho là
A. 5 B. 3 C. 4 D. 2
Câu 16: Cho hình chóp có đáy vuông tại , vuông góc với mặt phẳng đáy Góc giữa đường thẳng với mặt phẳng đáy bằng
A. B. C. D. .
Câu 17: Cho hình lăng trụ tam giác có đáylà tam giác đều cạnh Hình chiếu vuông góc của điểm xuống mặt phẳng đáy trùng với tâm đường tròn ngoại tiếp của tam giác biết hợp với mặt phẳng đáy một góc Thể tích của khối lăng trụ bằng
A. B. C. D.
Câu 18: Cho lăng trụ đứng có đáy ABC là tam giác đều cạnh . Góc giữa cạnh và mặt đáy là 300. Tính theo a thể tích khối lăng trụ .
A. B. C. D.
Câu 19: Cho hình chóp có đáylà hình vuông tâm cạnh cạnh bên vuông góc với mặt phẳng đáy và Khoảng cách giữa hai đường thẳng vàbằng
A. B. C. D.
Câu 20: Cho hình chóp có đáy là tam giác ABC vuông tại B, AC=2a , , Hình chiếu vuông góc H của đỉnh S trên mặt phẳng đáy là trung điểm của AC và . Thể tích của khối chóp theo a là :
A. B. C. D.
----------- HẾT ----------
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
A | ||||||||||||||||||||
B | ||||||||||||||||||||
C | ||||||||||||||||||||
D |
ĐỀ 8 Thuvienhoclieu.Com | ĐỀ ÔN TẬP CHƯƠNG KHỐI ĐA DIỆN HÌNH HỌC 12 |
Câu 1: Cho hình chóp có đáy là tam giác đều cạnh và thể tích bằng Tính chiều cao h của hình chóp đã cho.
A. B. C. D.
Câu 2: Hình đa diện nào dưới đây không có tâm đối xứng ?
A. Hình tứ diện đều. B. Hình lăng trụ tam giác đều.
C. Hình bát diện đều. D. Hình lập phương.
Câu 3: Tìm số cạnh của hình mười hai mặt đều.
A. 20. B. 12. C. 30. D. 16.
Câu 4: Cho tứ diện có thể tích bằng 12 và G là trọng tâm của tam giác Tính thể tích V của khối chóp
A. B. C. D.
Câu 5: Cho khối chóp có đáy là hình chữ nhật, vuông góc với đáy và mặt phẳng tạo với đáy một góc Tính thể tích V của khối chóp đã cho.
A. B. C. D.
Câu 6: Cho hình chóp có đáy là hình vuông cạnh vuông góc với mặt đáy, SD tạo với mặt phẳng một góc bằng . Tính thể tích V của khối chóp
A. B. C. D.
Câu 7: Mặt phẳng chia khối lăng trụ thành các khối đa diện nào ?
A. Một khối chóp tam giác và một khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác và một khối chóp ngũ giác.
D. Hai khối chóp tứ giác.
Câu 8: Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng ?
A. 4 mặt phẳng. B. 1 mặt phẳng. C. 3 mặt phẳng. D. 2 mặt phẳng.
Câu 9: Cho hình chóp đều S.ABCD đáy là hình vuông cạnh a và biết thể tích khối chóp là . Tìm là góc tạo bởi cạnh bên và mặt đáy.
A. B. C. D.
Câu 10: Hình hộp chữ nhật có ba kích thước đôi một khác nhau có bao nhiêu mặt phẳng đối xứng ?
A. 4 mặt phẳng. B. 6 mặt phẳng. C. 3 mặt phẳng. D. 9 mặt phẳng.
Câu 11: Cho hình chóp có đáy là hình vuông cạnh a và có tâm là O. vuông góc với mặt phẳng đáy; tạo với đáy một góc Khoảng cách h từ O đến
A. B. C. D.
Câu 12: Cho khối chóp có vuông góc với đáy, và . Tính thể tích V của khối chóp đã cho.
A. B. C. D.
Câu 13: Cho hình lăng trụ đứng có đáy là tam giác cân với , mặt phẳng tạo với đáy một góc Tính thể tích V của khối lăng trụ đã cho.
A. B. C. D.
Câu 14: Cho hình chóp đều S.ABCD đáy là hình vuông cạnh a và cạnh bên tạo với đáy một góc 60o. Tính thể tích V của khối hình chóp đã cho.
A. B. C. D.
Câu 15: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy, SC tạo đáy một góc bằng . Tính khoảng cách h từ điểm D đến mặt phẳng tính theo
A. B. C. D.
Câu 16: Cho hình chóp có mặt bên là tam giác đều cạnh , cạnh bên SA vuông góc với mặt phẳng đáy và . Độ dài đoạn thẳng
A. B. C. D.
Câu 17: Cho hình tứ diện đều cạnh bằng 2. Tìm chiều cao h của khối tứ diện đó.
A. B. C. D.
Câu 18: Tính thể tích V của khối lập phương , biết
A. B. C. D.
Câu 19: Cho hình chóp có đáy là tam giác đều cạnh Biết SA vuông góc với mặt phẳng đáy và thể tích của khối chóp là . Tìm là góc hợp giữa hai mặt phẳng (ABC) và (SBC).
A. B. C. D.
Câu 20: Cho hình chóp có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Biết thể tích của khối chóp theo a là . Góc giữa đường thẳng SD và mặt phẳng (SAB) là bao nhiêu độ ?
A. B. C. D.
----------- HẾT ----------
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
A | ||||||||||||||||||||
B | ||||||||||||||||||||
C | ||||||||||||||||||||
D |
ĐỀ 9 Thuvienhoclieu.Com | ĐỀ ÔN TẬP CHƯƠNG KHỐI ĐA DIỆN HÌNH HỌC 12 |
Câu 1: Cho hình chóp đều S.ABCD đáy là hình vuông cạnh và cạnh bên bằng Gọi là góc hợp bởi cạnh bên và mặt phẳng đáy. Tìm
A. B. C. D.
Câu 2: Cho khối chóp có vuông góc với đáy, và . Tính thể tích V của khối chóp đã cho.
A. B. C. D.
Câu 3: Cho tứ diện có thể tích bằng 18 và G là trọng tâm của tam giác Tính thể tích V của khối chóp
A. B. C. D.
Câu 4: Cho hình lăng trụ có đáy ABC là tam giác vuông cân tại B, . Hình chiếu vuông góc của trên mặt phẳng (ABC) là trung điểm của cạnh AC, đường thẳng tạo với mặt phẳng (ABC) một góc . Tính thể tích V của khối lăng trụ đã cho.
A. B. C. D.
Câu 5: Hình lập phương có bao nhiêu mặt phẳng đối xứng ?
A. 7 mặt phẳng. B. 3 mặt phẳng. C. 9 mặt phẳng. D. 6 mặt phẳng.
Câu 6: Mệnh đề nào dưới đây sai ?
A. Lắp ghép hai khối hộp sẽ được một khối đa diện lồi.
B. Khối tứ diện là khối đa diện lồi.
C. Khối hợp là khối đa diện lồi.
D. Khối lăng trụ tam giác là khối đa diện lồi.
Câu 7: Cho hình chóp có đáy là hình vuông cạnh , vuông góc với mặt đáy và Tính thể tích V của khối chóp
A. B. C. D.
Câu 8: Mặt phẳng chia khối lăng trụ thành các khối đa diện nào ?
A. Một khối chóp tam giác và một khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác và một khối chóp ngũ giác.
D. Hai khối chóp tứ giác.
Câu 9: Hình đa diện nào dưới đây không có trục đối xứng ?
A. Hình bát diện đều. B. Hình lập phương.
C. Hình lăng trụ tam giác đều. D. Hình tứ diện đều.
Câu 10: Cho hình chóp có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy và Gọi là góc hợp bởi hai mặt phẳng và Tìm
A. B. C. D.
Câu 11: Cho hình lăng trụ có độ dài cạnh bên đều bằng 2a, đáy ABC là tam giác vuông tại A, và hình chiếu vuông góc của đỉnh trên mặt phẳng là trung điểm của cạnh BC. Tính thể tích V của khối chóp được tính theo
A. B. C. D.
Câu 12: Hình bát diện đều có bao nhiêu mặt phẳng đối xứng ?
A. 6 mặt phẳng. B. 3 mặt phẳng. C. 9 mặt phẳng. D. 5 mặt phẳng.
Câu 13: Cho hình chóp đều S.ABCD có đáy là hình thoi cạnh và biết Gọi là góc giữa hai mặt phẳng và Tìm
A. B. C. D.
Câu 14: Cho hình lăng trụ đứng có đáy là tam giác đều cạnh bằng 4 và biết Tính thể tích V của khối lăng trụ đã cho.
A. B. C. D.
Câu 15: Cho hình lăng trụ tam giác đều có , góc giữa hai mặt phẳng và bằng Gọi G là trọng tâm của tam giác Tính khoảng cách d từ điểm G đến mặt phẳng
A. B. C. D.
Câu 16: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy, SC tạo đáy một góc bằng . Tính khoảng cách d từ điểm B đến mặt phẳng tính theo
A. B. C. D.
Câu 17: Cho hình chóp có đáy là hình vuông cạnh , cạnh bên SA vuông góc với mặt phẳng đáy và . Tính khoảng cách d giữa hai đường thẳng chéo nhau và
A. B. C. D.
Câu 18: Cho hình lăng trụ có và góc giữa với mặt phẳng đáy bằng Tính khoảng cách d giữa hai mặt đáy của lăng trụ đã cho.
A. B. C. D.
Câu 19: Tính thể tích V của khối tứ diện đều cạnh bằng
A. B. C. D.
Câu 20: Cho hình chóp có đáy là tam giác đều có chiều cao bằng và thể tích khối chóp bằng Tìm độ dài cạnh đáy x của tam giác
A. B. C. D.
----------- HẾT ----------
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
A | ||||||||||||||||||||
B | ||||||||||||||||||||
C | ||||||||||||||||||||
D |
ĐỀ 10 Thuvienhoclieu.Com | ĐỀ ÔN TẬP CHƯƠNG KHỐI ĐA DIỆN HÌNH HỌC 12 |
Câu 1: Khối hộp chữ nhật có ba kích thước lần lượt là thì thể tích bằng công thức nào?
A. . B. . C. . D. .
Câu 2: Cho khối chóp có đáy là tam giác vuông tại . Cạnh SA vuông góc với đáy, , , . Gọi M là trung điểm . Tính thể tích khối .
A. . B. . C. . D. .
Câu 3: Cho hình lăng trụ có đáy là tam giác đều cạnh . Hình chiếu vuông góc của lên mặt phẳng (ABC) trùng với trung điểm của AB. Góc giữa cạnh bên và mặt đáy bằng . Gọi lần lượt là trung điểm cạnh , . Tính độ dại đoạn .
A. . B. . C. . D. .
Câu 4: Cho hình lăng trụ đứng có đáy là tam giác vuông cân tại B, , góc giữa và đáy bằng . Tính thể tích của khối lăng trụ .
A. . B. . C. . D. .
Câu 5: Cho hình lăng trụ có , , , . Hình chiếu vuông góc của lên mặt phẳng trùng với trung điểm M của . Tính thể tích của khối lăng trụ .
A. . B. . C. . D. .
Câu 6: Cho hình chóp có đáy là tam giác vuông tại C, , các cạnh bên đều bằng nhau, góc giữa và mặt đáy bằng . Gọi M là trung điểm cạnh , tính độ dài đoạn .
A. . B. . C. . D. .
Câu 7: Cho hình chóp có đáy là hình thoi. Mặt bên là tam giác vuông cân tại và nằm trong mặt phẳng vuông góc với mặt phẳng . Tính thể tích khối chóp biết , .
A. B. C. D. .
Câu 8: Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh a, góc . Các mặt phẳng và cùng vuông góc với mặt đáy. Gọi M là trung điểm SD, thể tích khối chóp S.ABCD là . Hãy tính khoảng cách h từ M tới mặt phẳng theo .
A. . B. . C. . D. .
Câu 9: Hình mười hai mặt đều có bao nhiêu cạnh?
A. 20 B. 12. C. 30. D. 16.
Câu 10: Hình tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6. B. 10. C. 4. D. 8.
Câu 11: Cho hình chóp có đáy là hình vuông cạnh , mặt bên là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính khoảng cách h từ điểm A đến mặt phẳng.
A. . B. . C. . D. .
Câu 12: Cho hình chóp có đáy là hình vuông cạnh 2, SAD là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa mặt bên (SBC) và mặt đáy bằng . Tính thể tích khối chóp .
A. B. C. D.
Câu 13: Hình chóp đều là hình như thế nào?
A. Hình chóp có tất cả các cạnh bên, cạnh đáy đều bằng nhau.
B. Hình chóp có đáy là đa giác giác đều và cạnh bên vuông góc với đáy.
C. Hình chóp có cạnh đáy bằng nhau và chân đường cao trùng với tâm đáy.
D. Hình chóp có đáy là đa giác đều và tất cả các cạnh bên bằng nhau.
Câu 14: Cho hình lăng trụ tam giác đều có cạnh bên , góc tạo bởi và mặt đáy là . Gọi là trung điểm .Tính cosin góc tạo bởi 2 đường thẳng và .
A. . B. . C. . D. .
Câu 15: Cho hình lăng trụ đứng có mặt đáy là tam giác đều, cạnh . Biết góc giữa và đáy bằng . Tính khoảng cách hai đường chéo nhau và theo .
A. . B. . C. . D. .
Câu 16: Cho hình chóp S.ABC có đáy tam giác đều cạnh a, hai mặt phẳng và cùng vuông góc với mặt đáy và . Tính côsin của góc giữa hai mặt phẳng và .
A. . B. . C. . D. .
Câu 17: Cho hình chóp có , đáy là tam giác đều. Tính thể tích khối chóp , biết , .
A. . B. . C. D. .
Câu 18: Mệnh đề nào sau đây đúng?
A. Số cạnh của một hình đa diện luôn lớn hơn số mặt của hình đa diện ấy.
B. Số cạnh của một hình đa diện luôn bằng số mặt của hình đa diện ấy.
C. Số cạnh của một hình đa diện luôn nhỏ hơn hoặc bằng số mặt của hình đa diện ấy.
D. Số cạnh của một hình đa diện luôn nhỏ hơn số mặt của hình đa diện ấy.
Câu 19: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B,, SC hợp với đáy, SA vuông góc với đáy. Điểm I thuộc cạnh SC sao cho. Tính thể tích của khối chóp .
A. . B. . C. . D. .
Câu 20: Tính thể tích khối chóp tứ giác đều có cạnh đáy bằng và mặt bên tạo với mặt đáy góc .
A. . B. . C. . D. .
----------- HẾT ----------
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
A | ||||||||||||||||||||
B | ||||||||||||||||||||
C | ||||||||||||||||||||
D |
Xem thêm các bài tiếp theo bên dưới