(A+B)3=A3+3A2B+3AB2+B3(A+B)3=A3+3A2B+3AB2+B3
Ví dụ: (x+2)3=x3+3.x2.2+3.x.22+23=x3+6x2+12x+8(x+2)3=x3+3.x2.2+3.x.22+23=x3+6x2+12x+8
(A−B)3=A3−3A2B+3AB2−B3(A−B)3=A3−3A2B+3AB2−B3
Ví dụ: (x−2y)2=x3−3x2.2y+3.x.(2y)2+(2y)3(x−2y)2=x3−3x2.2y+3.x.(2y)2+(2y)3
=x3−6x2y+12xy2+8y3=x3−6x2y+12xy2+8y3
Ta có
−27x3 +27x2−9x+1=(−3x)3+3.(−3x)2.1+3(−3x).1+13=(−3x+1)3
Ta có
(2x2+y)3=(2x2)3+3.(2x2)2.y+3.2x2.y2+y3=8x6+12x4y+6x2y2+y3
Ta có
8x3 −36x2y+54xy2−27y3=(2x)3+3.(2x)2.(−3y)+3(x)(−3y)2−27y3=(2x−3y)3
Ta có (−b−a)3= [ −(a+b) ] 3=−(a+b)3
=−(a3+3a2b+3ab2+b3)=−a3−3a2b−3ab2−b3
=−a3−3ab(a+b)−b3 .
(c−d)3=c3−3c2d+3cd2+d3=c3−d3+3cd(d−c)
(y−1)3=y3−3y2.1+3y.12−13=y3−1−3y(y−1)
(y−2)3=y3−3y2.2+3y.22−23=y3−6y2+12y−8=y3−8−6y(y−2)≠y3−8−6y(y+2) .
Ta có
T=(2x)3−3.(2x)2.y2+3.2x.(y2)2−(y2)3=(2x−y2)3
Khi đó với x=3;y=2 ta được T=(2.3−4)3=23=8
Ta có
(x−y+1)3=(x−y)3+3(x−y)2+3(x−y)+1=x3−3x2y+3xy2−y3+3x2−6xy+3y2+3x−3y+1
Ta có
T=x3−3.x2.4+3.x.42−43= (x−4)3
Khi đó với x=10 ta được T=(10−4)3=63=216
Ta có
x3−15x2+75x−133=0⇔x3−3.x2.5+3.x.52−53−8=0⇔(x−5)3=8⇔x−5=2⇔x=7
(12x−2)3=(x2)3−3.(x2)2.2+3.x2.22−23=x38−3x22+6x−8
Ta có
(x−3y)3=x3−9x2y+27xy2−27y3(2x+y)3=8x3+12x2y+6xy2+y3⇒(x−3y)3−(2x+y)3=−7x3−21x2y+21xy2−28y3
(4x−1)3−(4x−3)(16x2+3)=x3⇔64x3−48x2+12x−1−64x3−12x+48x2+9=x3⇔8=x3⇔x=2
x3+3x2(y+1)+3x(y2+2y+1)+y3+3y2+3y+1
x3+3x2(y+1)+3x(y2+2y+1)+y3+3y2+3y+1=x3+3x2(y+1)+3x(y+1)2+(y+1)3=[x+(y+1)]3=(x+y+1)3.
Xem thêm các bài tiếp theo bên dưới