MỤC LỤC
Tính tích phân $\Large \int\limits_{0}^{\dfrac{\pi}{4}}{\dfrac{\ln (\sin x+\cos x)}{{{\cos }^{2}}x}dx}$ , ta được kết quả
Lời giải chi tiết:
Chọn C
$\Large\int\limits_{0}^{\dfrac{\pi}{4}}{\dfrac{\ln (\sin x+\cos x)}{{{\cos }^{2}}x}dx=\int\limits_{0}^{\dfrac{\pi}{4}}{\dfrac{\ln (\cos x.(1+\tan x))}{{{\cos }^{2}}x}dx=\int\limits_{0}^{\dfrac{\pi}{4}}{\left( \dfrac{\ln (\cos x)}{{{\cos }^{2}}x}+\dfrac{\ln (1+\tan x)}{{{\cos }^{2}}x} \right)dx}}}$ $\Large=\int\limits_{0}^{\dfrac{\pi}{4}}{\dfrac{\ln (\cos x)}{{{\cos }^{2}}x}dx+\int\limits_{0}^{\dfrac{\pi}{4}}{\dfrac{\ln (1+\tan x)}{{{\cos }^{2}}x}dx=I+J}}$
+ Tính I
Đặt $\Large\left\{ \begin{align} & u=\ln (\cos x)\Rightarrow du=-\dfrac{\sin x}{\cos x}dx \\ & dv=\dfrac{1}{{{\cos }^{2}}x}dx\Rightarrow v=\tan x \\ \end{align} \right.$
$\Large I=\int\limits_{0}^{\dfrac{\pi}{4}}{\dfrac{\ln (\cos x)}{{{\cos }^{2}}x}dx=\tan x.\ln (\cos x)\left| \begin{align} & \frac{\pi }{4} \\ & 0 \\ \end{align} \right.}$
$\Large +\int\limits_{0}^{\pi /4}{{{\tan }^{2}}xdx=\tan x.\ln (\cos x)\left| \begin{align} & \frac{\pi }{4} \\ & 0 \\ \end{align} \right.}$$\Large+(-x+\tan x)\left| \begin{align} & \frac{\pi }{4} \\ & 0 \\ \end{align} \right.$$\Large=-\dfrac{1}{2}\ln 2-\dfrac{\pi }{4}+1$
+ Tính J
$\Large J=\int\limits_{0}^{\dfrac{\pi}{4}}{\dfrac{\ln (1+\tan x)}{{{\cos }^{2}}x}dx}$. Đặt $\Large t=1+\tan x\Rightarrow dt=\dfrac{1}{{{\cos }^{2}}x}dx$
Đổi cận: $\Large x=0\Rightarrow t=1,x=\dfrac{\pi }{4}\Rightarrow t=2$
$\Large J=\int\limits_{1}^{2}{\ln tdt}$. Đặt $\Large \left\{ \begin{align} & u=\ln t\Rightarrow du=\dfrac{1}{t}dt \\ & dv=dt\Rightarrow v=t \\ \end{align} \right.$ $\Large \Rightarrow J=\int\limits_{1}^{2}{\ln tdt=(t\ln t-t)\left| \begin{align} & 2 \\ & 1 \\ \end{align} \right.}=2\ln 2-1$
Vậy $\Large \int\limits_{0}^{\dfrac{\pi}{4}}{\dfrac{\ln (\sin x+\cos x)}{{{\cos }^{2}}x}dx=-\dfrac{\pi }{4}+\dfrac{3}{2}\ln 2}$
Xem thêm các bài tiếp theo bên dưới