Cho hai hàm số <span class="MathJax_Preview" style="color: inherit;"><span class="MJXp-math" id="MJXp-Span-1"><span class="MJXp-mstyle" id="MJXp-Span-2"><span class="MJXp-mi MJXp-italic" id="MJXp-Span-3">f</span><span class="MJXp-mo" id="MJXp-Span-4" style="margin-left: 0em; margin-right: 0em;">(</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-5">x</span><span class="MJXp-mo" id="MJXp-Span-6" style="margin-left: 0em; margin-right: 0em;">)</span><span class="MJXp-mo" id="MJXp-Span-7" style="margin-left: 0.333em; margin-right: 0.333em;">=</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-8">a</span><span class="MJXp-mrow" id="MJXp-Span-9"><span class="MJXp-msubsup" id="MJXp-Span-10"><span class="MJXp-mrow" id="MJXp-Span-11" style="margin-right: 0.05em;"><span class="MJXp-mi MJXp-italic" id="MJXp-Span-12">x</span></span><span class="MJXp-mrow MJXp-script" id="MJXp-Span-13" style="vertical-align: 0.5em;"><span class="MJXp-mn" id="MJXp-Span-14">3</span></span></span></span><span class="MJXp-mo" id="MJXp-Span-15" style="margin-left: 0.267em; margin-right: 0.267em;">+</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-16">b</span><span class="MJXp-mrow" id="MJXp-Span-17"><span class="MJXp-msubsup" id="MJXp-Span-18"><span class="MJXp-mrow" id="MJXp-Span-19" style="margin-right: 0.05em;"><span class="MJXp-mi MJXp-italic" id="MJXp-Span-20">x</span></span><span class="MJXp-mrow MJXp-script" id="MJXp-Span-21" style="vertical-align: 0.5em;"><span class="MJXp-mn" id="MJXp-Span-22">2</span></span></span></span><span class="MJXp-mo" id="MJXp-Span-23" style="margin-left: 0.267em; margin-right: 0.267em;">+</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-24">c</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-25">x</span><span class="MJXp-mo" id="MJXp-Span-26" style="margin-left: 0.267em; margin-right: 0.267em;">+</span><span class="MJXp-mstyle" id="MJXp-Span-27"><span class="MJXp-mfrac" id="MJXp-Span-28" style="vertical-align: 0.25em;"><span class="MJXp-box"><span class="MJXp-mn" id="MJXp-Span-29">3</span></span><span class="MJXp-box" style="margin-top: -0.9em;"><span class="MJXp-denom"><span><span class="MJXp-rule" style="height: 1em; border-top: none; border-bottom: 1px solid; margin: 0.1em 0px;"></span></span><span><span class="MJXp-box"><span class="MJXp-mn" id="MJXp-Span-30">4</span></span></span></span></span></span></span></span></span></span><span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML MJXc-processed" tabindex="0" style="font-size: 127%;"><span id="MJXc-Node-1" class="mjx-math"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mstyle"><span id="MJXc-Node-4" class="mjx-mrow" style="font-size: 144%;"><span id="MJXc-Node-5" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.495em; padding-bottom: 0.495em; padding-right: 0.06em;">f</span></span><span id="MJXc-Node-6" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.445em; padding-bottom: 0.593em;">(</span></span><span id="MJXc-Node-7" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.199em; padding-bottom: 0.298em;">x</span></span><span id="MJXc-Node-8" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.445em; padding-bottom: 0.593em;">)</span></span><span id="MJXc-Node-9" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.101em; padding-bottom: 0.298em;">=</span></span><span id="MJXc-Node-10" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.199em; padding-bottom: 0.298em;">a</span></span><span id="MJXc-Node-11" class="mjx-texatom"><span id="MJXc-Node-12" class="mjx-mrow"><span id="MJXc-Node-13" class="mjx-msubsup"><span class="mjx-base"><span id="MJXc-Node-14" class="mjx-texatom"><span id="MJXc-Node-15" class="mjx-mrow"><span id="MJXc-Node-16" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.199em; padding-bottom: 0.298em;">x</span></span></span></span></span><span class="mjx-sup" style="font-size: 70.7%; vertical-align: 0.513em; padding-left: 0px; padding-right: 0.071em;"><span id="MJXc-Node-17" class="mjx-texatom" style=""><span id="MJXc-Node-18" class="mjx-mrow"><span id="MJXc-Node-19" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.396em; padding-bottom: 0.347em;">3</span></span></span></span></span></span></span></span><span id="MJXc-Node-20" class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.298em; padding-bottom: 0.445em;">+</span></span><span id="MJXc-Node-21" class="mjx-mi MJXc-space2"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.495em; padding-bottom: 0.298em;">b</span></span><span id="MJXc-Node-22" class="mjx-texatom"><span id="MJXc-Node-23" class="mjx-mrow"><span id="MJXc-Node-24" class="mjx-msubsup"><span class="mjx-base"><span id="MJXc-Node-25" class="mjx-texatom"><span id="MJXc-Node-26" class="mjx-mrow"><span id="MJXc-Node-27" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.199em; padding-bottom: 0.298em;">x</span></span></span></span></span><span class="mjx-sup" style="font-size: 70.7%; vertical-align: 0.513em; padding-left: 0px; padding-right: 0.071em;"><span id="MJXc-Node-28" class="mjx-texatom" style=""><span id="MJXc-Node-29" class="mjx-mrow"><span id="MJXc-Node-30" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.396em; padding-bottom: 0.347em;">2</span></span></span></span></span></span></span></span><span id="MJXc-Node-31" class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.298em; padding-bottom: 0.445em;">+</span></span><span id="MJXc-Node-32" class="mjx-mi MJXc-space2"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.199em; padding-bottom: 0.298em;">c</span></span><span id="MJXc-Node-33" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.199em; padding-bottom: 0.298em;">x</span></span><span id="MJXc-Node-34" class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.298em; padding-bottom: 0.445em;">+</span></span><span id="MJXc-Node-35" class="mjx-mstyle MJXc-space2"><span id="MJXc-Node-36" class="mjx-mrow"><span id="MJXc-Node-37" class="mjx-mfrac"><span class="mjx-box MJXc-stacked" style="width: 0.7em; padding: 0px 0.12em;"><span class="mjx-numerator" style="width: 0.7em; top: -1.367em;"><span id="MJXc-Node-38" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.396em; padding-bottom: 0.347em;">3</span></span></span><span class="mjx-denominator" style="width: 0.7em; bottom: -0.711em;"><span id="MJXc-Node-39" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.396em; padding-bottom: 0.347em;">4</span></span></span><span class="mjx-line" style="border-bottom: 1.8px solid; top: -0.281em; width: 0.7em;"></span></span><span class="mjx-vsize" style="height: 2.077em; vertical-align: -0.711em;"></span></span></span></span></span></span></span></span></span><script type="math/tex" id="MathJax-Element-1">\Large f(x)=a{{x}^{3}}+b{{x}^{2}}+cx+\dfrac{3}{4}</script> và

Cho hai hàm số f(x)=ax3+bx2+cx+34f(x)=ax3+bx2+cx+34

4.2/5

Tác giả: Thầy Tùng

Đăng ngày: 19 Aug 2022

Lưu về Facebook:
Hình minh họa Cho hai hàm số $\Large f(x)=a{{x}^{3}}+b{{x}^{2}}+cx+\dfrac{3}{4}$ và

Câu hỏi:

Cho hai hàm số f(x)=ax3+bx2+cx+34f(x)=ax3+bx2+cx+34 và g(x)=dx2+ex34g(x)=dx2+ex34, (a,b,c,d,eR)(a,b,c,d,eR) . Biết rằng đồ thị của hàm số y=f(x)y=f(x)y=g(x)y=g(x) cắt nhau tại ba điểm có hoành độ lần lượt là 2;1;32;1;3 ( tham khảo hình vẽ ) . Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng

Hình câu hỏi 1. Cho hai hàm số $\Large f(x)=a{{x}^{3}}+b{{x}^{2}}+cx+\dfrac{3}{4}$ và

Đáp án án đúng là: A

Lời giải chi tiết:

Phương trình hoành độ giao điểm ax3+bx2+cx+34=dx2+ex34ax3+(bd)x2+(ce)x+32=0ax3+bx2+cx+34=dx2+ex34ax3+(bd)x2+(ce)x+32=0

Đặt h(x)=ax3+(bd)x2+(ce)x+32h(x)=ax3+(bd)x2+(ce)x+32

Dựa vào đồ thị ta có h(x)=0h(x)=0 có ba nghiệm là x=2.x=1,x=3x=2.x=1,x=3

Khi đó ta có hệ: {8a+4(bd)2(ce)=32a+(bd)+(ce)=3227a+9(bd)+3(ce)=32 {a=14bd=12ce=54

Khi đó diện tích hình phẳng cần tính là: 

S=32|f(x)g(x)|dx=12|14x312x254x+32|dx+31|14x312x254x+32|dx

=12(14x312x254x+32)dx31(14x312x254x+32)dx=6316+43=25348

Chọn đáp án A