MỤC LỤC
Tính giới hạn $\Large \underset{x\rightarrow 0}{lim}\dfrac{\sqrt[3]{x+1}-1}{\sqrt[4]{2x+1}-1}$
Lời giải chi tiết:
$\Large \underset{x\rightarrow 0}{lim}\dfrac{\sqrt[3]{x+1}-1}{\sqrt[4]{2x+1}-1}$
$\Large =\underset{x\rightarrow 0}{lim}\dfrac{(\sqrt[3]{x+1}-1)\left(\sqrt[3]{(x+1)^2}+\sqrt[3]{x+1}-1\right)(\sqrt[4]{2x+1}+1)}{(\sqrt[4]{2x+1}-1)(\sqrt[4]{2x+1}+1)\left(\sqrt[3]{(x+1)^2}+\sqrt[3]{x+1}-1\right)}$
$\Large =\underset{x\rightarrow 0}{lim}\dfrac{x(\sqrt[4]{2x+1}+1)}{(\sqrt[2]{2x+1}-1)\left(\sqrt[3]{(x+1)^2}+\sqrt[3]{x+1}-1\right)}$
$\Large =\underset{x\rightarrow 0}{lim}\dfrac{x(\sqrt[4]{2x+1}+1)(\sqrt[2]{2x+1}+1)}{(\sqrt[2]{2x+1}-1)(\sqrt[2]{2x+1}+1)\left(\sqrt[3]{(x+1)^2}+\sqrt[3]{x+1}-1\right)}$
$\Large =\underset{x\rightarrow 0}{lim}\dfrac{x(\sqrt[4]{2x+1}+1)(\sqrt[2]{2x+1}+1)}{2x\left(\sqrt[3]{(x+1)^2}+\sqrt[3]{x+1}-1\right)}$
$\Large =\underset{x\rightarrow 0}{lim}\dfrac{(\sqrt[4]{2x+1}+1)(\sqrt[2]{2x+1}+1)}{2\left(\sqrt[3]{(x+1)^2}+\sqrt[3]{x+1}-1\right)}$
$\Large =\underset{x\rightarrow 0}{lim}\dfrac{2.2}{2(1+1+1)}=\dfrac{2}{3}$.
Chọn C.
Xem thêm các bài tiếp theo bên dưới