Tìm tập xác định của hàm số <span class="MathJax_Preview" style="color: inherit;"><span class="MJXp-math" id="MJXp-Span-1"><span class="MJXp-mstyle" id="MJXp-Span-2"><span class="MJXp-mi MJXp-italic" id="MJXp-Span-3">y</span><span class="MJXp-mo" id="MJXp-Span-4" style="margin-left: 0.333em; margin-right: 0.333em;">=</span><span class="MJXp-msubsup" id="MJXp-Span-5"><span class="MJXp-mrow" id="MJXp-Span-6" style="margin-right: 0.05em;"><span class="MJXp-mi" id="MJXp-Span-7">l</span><span class="MJXp-mi" id="MJXp-Span-8">o</span><span class="MJXp-mi" id="MJXp-Span-9">g</span></span><span class="MJXp-mn MJXp-script" id="MJXp-Span-10" style="vertical-align: -0.4em;">2</span></span><span class="MJXp-mo" id="MJXp-Span-11" style="margin-left: 0em; margin-right: 0em;">(</span><span class="MJXp-msubsup" id="MJXp-Span-12"><span class="MJXp-mi MJXp-italic" id="MJXp-Span-13" style="margin-right: 0.05em;">x</span><span class="MJXp-mn MJXp-script" id="MJXp-Span-14" style="vertical-align: 0.5em;">2</span></span><span class="MJXp-mo" id="MJXp-Span-15" style="margin-left: 0.267em; margin-right: 0.267em;">−</span><span class="MJXp-mn" id="MJXp-Span-16">2</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-17">x</span><span class="MJXp-mo" id="MJXp-Span-18" style="margin-left: 0.267em; margin-right: 0.267em;">−</span><span class="MJXp-mn" id="MJXp-Span-19">3</span><span class="MJXp-mo" id="MJXp-Span-20" style="margin-left: 0em; margin-right: 0em;">)</span><span class="MJXp-mo" id="MJXp-Span-21" style="margin-left: 0em; margin-right: 0.222em;">.</span></span></span></span><span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML MJXc-processed" tabindex="0" style="font-size: 127%;"><span id="MJXc-Node-1" class="mjx-math"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mstyle"><span id="MJXc-Node-4" class="mjx-mrow" style="font-size: 144%;"><span id="MJXc-Node-5" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.199em; padding-bottom: 0.495em; padding-right: 0.006em;">y</span></span><span id="MJXc-Node-6" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.101em; padding-bottom: 0.298em;">=</span></span><span id="MJXc-Node-7" class="mjx-msubsup MJXc-space3"><span class="mjx-base"><span id="MJXc-Node-8" class="mjx-texatom"><span id="MJXc-Node-9" class="mjx-mrow"><span id="MJXc-Node-10" class="mjx-mi"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.396em; padding-bottom: 0.347em;">l</span></span><span id="MJXc-Node-11" class="mjx-mi"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.15em; padding-bottom: 0.347em;">o</span></span><span id="MJXc-Node-12" class="mjx-mi"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.15em; padding-bottom: 0.544em;">g</span></span></span></span></span><span class="mjx-sub" style="font-size: 70.7%; vertical-align: -0.377em; padding-right: 0.071em;"><span id="MJXc-Node-13" class="mjx-mn" style=""><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.396em; padding-bottom: 0.347em;">2</span></span></span></span><span id="MJXc-Node-14" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.445em; padding-bottom: 0.593em;">(</span></span><span id="MJXc-Node-15" class="mjx-msubsup"><span class="mjx-base"><span id="MJXc-Node-16" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.199em; padding-bottom: 0.298em;">x</span></span></span><span class="mjx-sup" style="font-size: 70.7%; vertical-align: 0.513em; padding-left: 0px; padding-right: 0.071em;"><span id="MJXc-Node-17" class="mjx-mn" style=""><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.396em; padding-bottom: 0.347em;">2</span></span></span></span><span id="MJXc-Node-18" class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.298em; padding-bottom: 0.445em;">−</span></span><span id="MJXc-Node-19" class="mjx-mn MJXc-space2"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.396em; padding-bottom: 0.347em;">2</span></span><span id="MJXc-Node-20" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.199em; padding-bottom: 0.298em;">x</span></span><span id="MJXc-Node-21" class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.298em; padding-bottom: 0.445em;">−</span></span><span id="MJXc-Node-22" class="mjx-mn MJXc-space2"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.396em; padding-bottom: 0.347em;">3</span></span><span id="MJXc-Node-23" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.445em; padding-bottom: 0.593em;">)</span></span><span id="MJXc-Node-24" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="margin-top: -0.145em; padding-bottom: 0.347em;">.</span></span></span></span></span></span></span><script type="math/tex" id="MathJax-Element-1">\Large y=\mathrm{log}_2(x^2-2x-3).</script> A. $\

Tìm tập xác định của hàm số y=log2(x22x3).y=log2(x22x3). A. $\

4.2/5

Tác giả: Thầy Tùng

Đăng ngày: 18 Aug 2022

Lưu về Facebook:

Câu hỏi:

Tìm tập xác định của hàm số y=log2(x22x3).y=log2(x22x3).

Đáp án án đúng là: A

Lời giải chi tiết:

Chọn A

Điều kiện: x22x3>0x22x3>0 [x<1x>3.

Tập xác định D=(;1)(3;+).