Hàm số <span class="MathJax_Preview" style="color: inherit;"><span class="MJXp-math" id="MJXp-Span-1"><span class="MJXp-mstyle" id="MJXp-Span-2"><span class="MJXp-mi MJXp-italic" id="MJXp-Span-3">y</span><span class="MJXp-mo" id="MJXp-Span-4" style="margin-left: 0.333em; margin-right: 0.333em;">=</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-5">a</span><span class="MJXp-msubsup" id="MJXp-Span-6"><span class="MJXp-mi MJXp-italic" id="MJXp-Span-7" style="margin-right: 0.05em;">x</span><span class="MJXp-mrow MJXp-script" id="MJXp-Span-8" style="vertical-align: 0.5em;"><span class="MJXp-mn" id="MJXp-Span-9">3</span></span></span><span class="MJXp-mo" id="MJXp-Span-10" style="margin-left: 0.267em; margin-right: 0.267em;">+</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-11">b</span><span class="MJXp-msubsup" id="MJXp-Span-12"><span class="MJXp-mi MJXp-italic" id="MJXp-Span-13" style="margin-right: 0.05em;">x</span><span class="MJXp-mrow MJXp-script" id="MJXp-Span-14" style="vertical-align: 0.5em;"><span class="MJXp-mn" id="MJXp-Span-15">2</span></span></span><span class="MJXp-mo" id="MJXp-Span-16" style="margin-left: 0.267em; margin-right: 0.267em;">+</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-17">c</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-18">x</span><span class="MJXp-mo" id="MJXp-Span-19" style="margin-left: 0.267em; margin-right: 0.267em;">+</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-20">d</span></span></span></span><span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML MJXc-processed" tabindex="0" style="font-size: 127%;"><span id="MJXc-Node-1" class="mjx-math"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mstyle"><span id="MJXc-Node-4" class="mjx-mrow" style="font-size: 120%;"><span id="MJXc-Node-5" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.199em; padding-bottom: 0.495em; padding-right: 0.006em;">y</span></span><span id="MJXc-Node-6" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.101em; padding-bottom: 0.298em;">=</span></span><span id="MJXc-Node-7" class="mjx-mi MJXc-space3"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.199em; padding-bottom: 0.298em;">a</span></span><span id="MJXc-Node-8" class="mjx-msubsup"><span class="mjx-base"><span id="MJXc-Node-9" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.199em; padding-bottom: 0.298em;">x</span></span></span><span class="mjx-sup" style="font-size: 70.7%; vertical-align: 0.513em; padding-left: 0px; padding-right: 0.071em;"><span id="MJXc-Node-10" class="mjx-texatom" style=""><span id="MJXc-Node-11" class="mjx-mrow"><span id="MJXc-Node-12" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.396em; padding-bottom: 0.347em;">3</span></span></span></span></span></span><span id="MJXc-Node-13" class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.298em; padding-bottom: 0.445em;">+</span></span><span id="MJXc-Node-14" class="mjx-mi MJXc-space2"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.495em; padding-bottom: 0.298em;">b</span></span><span id="MJXc-Node-15" class="mjx-msubsup"><span class="mjx-base"><span id="MJXc-Node-16" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.199em; padding-bottom: 0.298em;">x</span></span></span><span class="mjx-sup" style="font-size: 70.7%; vertical-align: 0.513em; padding-left: 0px; padding-right: 0.071em;"><span id="MJXc-Node-17" class="mjx-texatom" style=""><span id="MJXc-Node-18" class="mjx-mrow"><span id="MJXc-Node-19" class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.396em; padding-bottom: 0.347em;">2</span></span></span></span></span></span><span id="MJXc-Node-20" class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.298em; padding-bottom: 0.445em;">+</span></span><span id="MJXc-Node-21" class="mjx-mi MJXc-space2"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.199em; padding-bottom: 0.298em;">c</span></span><span id="MJXc-Node-22" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.199em; padding-bottom: 0.298em;">x</span></span><span id="MJXc-Node-23" class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.298em; padding-bottom: 0.445em;">+</span></span><span id="MJXc-Node-24" class="mjx-mi MJXc-space2"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.495em; padding-bottom: 0.298em; padding-right: 0.003em;">d</span></span></span></span></span></span></span><script type="math/tex" id="MathJax-Element-1">\large y=a x^{3}+b x^{2}+c x+d</script> nghịch biến trên $\large \math

Hàm số y=ax3+bx2+cx+dy=ax3+bx2+cx+d nghịch biến trên $\large \math

4.8/5

Tác giả: Thầy Tùng

Đăng ngày: 18 Aug 2022

Lưu về Facebook:

Câu hỏi:

Hàm số y=ax3+bx2+cx+dy=ax3+bx2+cx+d nghịch biến trên R khi và chỉ khi

 

Đáp án án đúng là: D

Lời giải chi tiết:

Nếu a=b=0y=cx+d nghịch biến trên R khi c<0

Hàm số bậc ba y=ax3+bx2+cx+d(a0) nghịch biến trên R{a<0b23ac0

Vậy điều kiện là: a<0 và b23ac0 hoặc a=b=0 và c<0 đáp án D.