\r\n\r\n
Ta có:
\r\n\r\n$\\Large I = \\int_{1}^{5}\\dfrac{1}{1 + \\sqrt{3x + 1}}dx$
\r\n\r\n$\\Large I = \\int_{1}^{4}\\dfrac{1}{1+ t}.\\dfrac{2}{3}. tdt$
\r\n\r\n$\\Large I = \\dfrac{2}{3} \\int_{2}^{4}\\dfrac{t}{t + 1}dt$
\r\n\r\n$\\Large I = \\dfrac{2}{3} \\int_{2}^{4}\\left ( 1 - \\dfrac{1}{t + 1} \\right )dt$
\r\n\r\n$\\Large I = \\dfrac{2}{3} \\left ( t - \\ln \\left | 1 + t \\right | \\right )|_{2}^{4}$
\r\n\r\n$\\Large I = \\dfrac{4}{3} + \\dfrac{2}{3} \\ln3 - \\dfrac{2}{3} \\ln5 $
\r\n\r\nDo đó: $\\Large a = \\dfrac{4}{3}$
\r\n\r\n$\\Large b = \\dfrac{2}{3}$
\r\n\r\n$\\Large c = -\\dfrac{2}{3}$
\r\n\r\nVậy $\\Large a + b + c = \\dfrac{4}{3}$.
\r\n","url":"https://hoc357.edu.vn/cau-hoi/gia-su-tich-phan-large-i-int-15dfrac11-sqrt3x-1d-v78","dateCreated":"2022-08-19T14:29:35.632Z","author":{"@type":"Person","name":"Trần Thanh Hùng"}},"suggestedAnswer":[]}}MỤC LỤC
Giả sử tích phân $\Large I = \int_{1}^{5}\dfrac{1}{1 + \sqrt{3x + 1}}dx = a + b \ln 3 + c \ln 5$. Lúc đó:
Lời giải chi tiết:
Chọn B
Đặt $\Large t = \sqrt{3x + 1}$. Ta có:
$\Large t^{2} = 3x+ 1$
=> $\Large dx = \dfrac{2}{3}tdt$
Đổi cận
Ta có:
$\Large I = \int_{1}^{5}\dfrac{1}{1 + \sqrt{3x + 1}}dx$
$\Large I = \int_{1}^{4}\dfrac{1}{1+ t}.\dfrac{2}{3}. tdt$
$\Large I = \dfrac{2}{3} \int_{2}^{4}\dfrac{t}{t + 1}dt$
$\Large I = \dfrac{2}{3} \int_{2}^{4}\left ( 1 - \dfrac{1}{t + 1} \right )dt$
$\Large I = \dfrac{2}{3} \left ( t - \ln \left | 1 + t \right | \right )|_{2}^{4}$
$\Large I = \dfrac{4}{3} + \dfrac{2}{3} \ln3 - \dfrac{2}{3} \ln5 $
Do đó: $\Large a = \dfrac{4}{3}$
$\Large b = \dfrac{2}{3}$
$\Large c = -\dfrac{2}{3}$
Vậy $\Large a + b + c = \dfrac{4}{3}$.
Xem thêm các bài tiếp theo bên dưới