Cho <span class="MathJax_Preview" style="color: inherit;"><span class="MJXp-math" id="MJXp-Span-1"><span class="MJXp-mstyle" id="MJXp-Span-2"><span class="MJXp-mi MJXp-italic" id="MJXp-Span-3">a</span><span class="MJXp-mo" id="MJXp-Span-4" style="margin-left: 0em; margin-right: 0.222em;">,</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-5">b</span></span></span></span><span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML MJXc-processed" tabindex="0" style="font-size: 127%;"><span id="MJXc-Node-1" class="mjx-math"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mstyle"><span id="MJXc-Node-4" class="mjx-mrow" style="font-size: 144%;"><span id="MJXc-Node-5" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.199em; padding-bottom: 0.298em;">a</span></span><span id="MJXc-Node-6" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="margin-top: -0.145em; padding-bottom: 0.544em;">,</span></span><span id="MJXc-Node-7" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.495em; padding-bottom: 0.298em;">b</span></span></span></span></span></span></span><script type="math/tex" id="MathJax-Element-1">\Large a, b</script> là hai số thực dương thỏa mãn <span class="MathJax_Preview" style="color: inherit;"><span class="MJXp-math" id="MJXp-Span-6"><span class="MJXp-mstyle" id="MJXp-Span-7"><span class="MJXp-msubsup" id="MJXp-Span-8"><span class="MJXp-mi MJXp-italic" id="MJXp-Span-9" style="margin-right: 0.05em;">b</span><span class="MJXp-mn MJXp-script" id="MJXp-Span-10" style="vertical-align: 0.5em;">2</span></span><span class="MJXp-mo" id="MJXp-Span-11" style="margin-left: 0.333em; margin-right: 0.333em;">=</span><span class="MJXp-mn" id="MJXp-Span-12">3</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-13">a</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-14">b</span><span class="MJXp-mo" id="MJXp-Span-15" style="margin-left: 0.267em; margin-right: 0.267em;">+</span><span class="MJXp-mn" id="MJXp-Span-16">4</span><span class="MJXp-msubsup" id="MJXp-Span-17"><span class="MJXp-mi MJXp-italic" id="MJXp-Span-18" style="margin-right: 0.05em;">a</span><span class="MJXp-mn MJXp-script" id="MJXp-Span-19" style="vertical-align: 0.5em;">2</span></span></span></span></span><span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML MJXc-processed" tabindex="0" style="font-size: 127%;"><span id="MJXc-Node-8" class="mjx-math"><span id="MJXc-Node-9" class="mjx-mrow"><span id="MJXc-Node-10" class="mjx-mstyle"><span id="MJXc-Node-11" class="mjx-mrow" style="font-size: 144%;"><span id="MJXc-Node-12" class="mjx-msubsup"><span class="mjx-base"><span id="MJXc-Node-13" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.495em; padding-bottom: 0.298em;">b</span></span></span><span class="mjx-sup" style="font-size: 70.7%; vertical-align: 0.513em; padding-left: 0px; padding-right: 0.071em;"><span id="MJXc-Node-14" class="mjx-mn" style=""><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.396em; padding-bottom: 0.347em;">2</span></span></span></span><span id="MJXc-Node-15" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.101em; padding-bottom: 0.298em;">=</span></span><span id="MJXc-Node-16" class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.396em; padding-bottom: 0.347em;">3</span></span><span id="MJXc-Node-17" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.199em; padding-bottom: 0.298em;">a</span></span><span id="MJXc-Node-18" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.495em; padding-bottom: 0.298em;">b</span></span><span id="MJXc-Node-19" class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.298em; padding-bottom: 0.445em;">+</span></span><span id="MJXc-Node-20" class="mjx-mn MJXc-space2"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.396em; padding-bottom: 0.347em;">4</span></span><span id="MJXc-Node-21" class="mjx-msubsup"><span class="mjx-base"><span id="MJXc-Node-22" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.199em; padding-bottom: 0.298em;">a</span></span></span><span class="mjx-sup" style="font-size: 70.7%; vertical-align: 0.513em; padding-left: 0px; padding-right: 0.071em;"><span id="MJXc-Node-23" class="mjx-mn" style=""><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.396em; padding-bottom: 0.347em;">2</span></span></span></span></span></span></span></span></span><script type="math/tex" id="MathJax-Element-2">\Large b^2=3ab+4a^2</script>

Cho a,ba,b là hai số thực dương thỏa mãn b2=3ab+4a2b2=3ab+4a2

4.9/5

Tác giả: Thầy Tùng

Đăng ngày: 18 Aug 2022

Lưu về Facebook:

Câu hỏi:

Cho a,ba,b là hai số thực dương thỏa mãn b2=3ab+4a2b2=3ab+4a2a[4;232]a[4;232]. Gọi M,mM,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=logb84a+34log2b4P=logb84a+34log2b4. Tính tổng T=M+mT=M+m

Đáp án án đúng là: A

Lời giải chi tiết:

Chọn A

Từ giả thiết ta có: b2=3ab+4a24(ab)2+3ab1=0ab=14(a,b>0)b=4ab2=3ab+4a24(ab)2+3ab1=0ab=14(a,b>0)b=4a

Khi đó: P=logb84a+34log2b4=logb8b+34(log2blog24)=1logbb8+34log2b32P=logb84a+34log2b4=logb8b+34(log2blog24)=1logbb8+34log2b32

=11logb8+34log2b32=113log2b+34log2b32=log2blog2b3+34log2b32=11logb8+34log2b32=113log2b+34log2b32=log2blog2b3+34log2b32

Đặt t=log2bt=log2b với a[4;232]16b2344log2b34t[4;34]a[4;232]16b2344log2b34t[4;34]

Xét hàm số f(t)=tt3+34tf(t)=tt3+34t với t[4;34]t[4;34] ta có f(t)=3(t26t+5)4(t3)2,t[4;34]f(t)=3(t26t+5)4(t3)2,t[4;34]

Phương trình 

f(t)=0f(t)=0 {4t34t26t+5=0 t=5f(4)=7,f(5)=254,f(34)=164962

Suy ra: {max[4;34]f(t)=f(34)=164962min[4;34]f(t)=f(5)=254 {M=Pmax=77831m=Pmin=194 T=M+m=3701124