Cho <span class="MathJax_Preview" style="color: inherit; display: none;"></span><span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle mathsize="1.44em"><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></mstyle></math>" role="presentation" style="font-size: 127%; position: relative;"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mstyle"><span id="MJXc-Node-4" class="mjx-mrow" style="font-size: 144%;"><span id="MJXc-Node-5" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.199em; padding-bottom: 0.298em;">a</span></span><span id="MJXc-Node-6" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="margin-top: -0.145em; padding-bottom: 0.544em;">,</span></span><span id="MJXc-Node-7" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.495em; padding-bottom: 0.298em;">b</span></span><span id="MJXc-Node-8" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="margin-top: -0.145em; padding-bottom: 0.544em;">,</span></span><span id="MJXc-Node-9" class="mjx-mi MJXc-space1"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.199em; padding-bottom: 0.298em;">c</span></span></span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle mathsize="1.44em"><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></mstyle></math></span></span><script type="math/tex" id="MathJax-Element-1">\Large a, b, c</script> là các số dương, <span class="MathJax_Preview" style="color: inherit; display: none;"></span><span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle mathsize="1.44em"><mi>a</mi><mo>&#x2260;</mo><mn>1</mn></mstyle></math>" role="presentation" style="font-size: 127%; position: relative;"><span id="MJXc-Node-10" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-11" class="mjx-mrow"><span id="MJXc-Node-12" class="mjx-mstyle"><span id="MJXc-Node-13" class="mjx-mrow" style="font-size: 144%;"><span id="MJXc-Node-14" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.199em; padding-bottom: 0.298em;">a</span></span><span id="MJXc-Node-15" class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.445em; padding-bottom: 0.544em;">≠</span></span><span id="MJXc-Node-16" class="mjx-mn MJXc-space3"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.396em; padding-bottom: 0.347em;">1</span></span></span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle mathsize="1.44em"><mi>a</mi><mo>≠</mo><mn>1</mn></mstyle></math></span></span><script type="math/tex" id="MathJax-Element-2">\Large a \neq 1</script> thỏa mãn $\Lar

Cho a,b,c là các số dương, a1 thỏa mãn $\Lar

4.5/5

Tác giả: Thầy Tùng

Đăng ngày: 18 Aug 2022

Lưu về Facebook:

Câu hỏi:

Cho a,b,c là các số dương, a1 thỏa mãn logab=3; logac=2. Tính loga(a3b2c).

Đáp án án đúng là: D

Lời giải chi tiết:

Chọn D

loga(a3b2c) 

=logaa3+logab2+logac 

=3+2logab+12logac 

=3+2.3+12.(2) 

=8.