Cho hình hộp <span class="MathJax_Preview" style="color: inherit; display: none;"></span><span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle mathsize="1.2em"><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi><mo>.</mo><msup><mi>A</mi><mo>&#x2032;</mo></msup><msup><mi>B</mi><mo>&#x2032;</mo></msup><msup><mi>C</mi><mo>&#x2032;</mo></msup><msup><mi>D</mi><mo>&#x2032;</mo></msup></mstyle></math>" role="presentation" style="font-size: 127%; position: relative;"><span id="MJXc-Node-1" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-2" class="mjx-mrow"><span id="MJXc-Node-3" class="mjx-mstyle"><span id="MJXc-Node-4" class="mjx-mrow" style="font-size: 120%;"><span id="MJXc-Node-5" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.495em; padding-bottom: 0.298em;">A</span></span><span id="MJXc-Node-6" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.445em; padding-bottom: 0.298em;">B</span></span><span id="MJXc-Node-7" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.495em; padding-bottom: 0.298em; padding-right: 0.045em;">C</span></span><span id="MJXc-Node-8" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.445em; padding-bottom: 0.298em;">D</span></span><span id="MJXc-Node-9" class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="margin-top: -0.145em; padding-bottom: 0.347em;">.</span></span><span id="MJXc-Node-10" class="mjx-msup MJXc-space1"><span class="mjx-base"><span id="MJXc-Node-11" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.495em; padding-bottom: 0.298em;">A</span></span></span><span class="mjx-sup" style="font-size: 70.7%; vertical-align: 0.513em; padding-left: 0px; padding-right: 0.071em;"><span id="MJXc-Node-12" class="mjx-mo" style=""><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.298em; padding-bottom: 0.298em;">′</span></span></span></span><span id="MJXc-Node-13" class="mjx-msup"><span class="mjx-base"><span id="MJXc-Node-14" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.445em; padding-bottom: 0.298em;">B</span></span></span><span class="mjx-sup" style="font-size: 70.7%; vertical-align: 0.513em; padding-left: 0px; padding-right: 0.071em;"><span id="MJXc-Node-15" class="mjx-mo" style=""><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.298em; padding-bottom: 0.298em;">′</span></span></span></span><span id="MJXc-Node-16" class="mjx-msup"><span class="mjx-base" style="margin-right: -0.045em;"><span id="MJXc-Node-17" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.495em; padding-bottom: 0.298em; padding-right: 0.045em;">C</span></span></span><span class="mjx-sup" style="font-size: 70.7%; vertical-align: 0.513em; padding-left: 0.153em; padding-right: 0.071em;"><span id="MJXc-Node-18" class="mjx-mo" style=""><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.298em; padding-bottom: 0.298em;">′</span></span></span></span><span id="MJXc-Node-19" class="mjx-msup"><span class="mjx-base"><span id="MJXc-Node-20" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.445em; padding-bottom: 0.298em;">D</span></span></span><span class="mjx-sup" style="font-size: 70.7%; vertical-align: 0.513em; padding-left: 0px; padding-right: 0.071em;"><span id="MJXc-Node-21" class="mjx-mo" style=""><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.298em; padding-bottom: 0.298em;">′</span></span></span></span></span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle mathsize="1.2em"><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi><mo>.</mo><msup><mi>A</mi><mo>′</mo></msup><msup><mi>B</mi><mo>′</mo></msup><msup><mi>C</mi><mo>′</mo></msup><msup><mi>D</mi><mo>′</mo></msup></mstyle></math></span></span><script type="math/tex" id="MathJax-Element-1">\large ABCD.A'B'C'D'</script> có đáy <span class="MathJax_Preview" style="color: inherit; display: none;"></span><span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle mathsize="1.2em"><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi></mstyle></math>" role="presentation" style="font-size: 127%; position: relative;"><span id="MJXc-Node-22" class="mjx-math" aria-hidden="true"><span id="MJXc-Node-23" class="mjx-mrow"><span id="MJXc-Node-24" class="mjx-mstyle"><span id="MJXc-Node-25" class="mjx-mrow" style="font-size: 120%;"><span id="MJXc-Node-26" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.495em; padding-bottom: 0.298em;">A</span></span><span id="MJXc-Node-27" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.445em; padding-bottom: 0.298em;">B</span></span><span id="MJXc-Node-28" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.495em; padding-bottom: 0.298em; padding-right: 0.045em;">C</span></span><span id="MJXc-Node-29" class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.445em; padding-bottom: 0.298em;">D</span></span></span></span></span></span><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle mathsize="1.2em"><mi>A</mi><mi>B</mi><mi>C</mi><mi>D</mi></mstyle></math></span></span><script type="math/tex" id="MathJax-Element-2">\large ABCD</script> là hình thoi

Cho hình hộp ABCD.ABCD có đáy ABCD là hình thoi

4.6/5

Tác giả: Thầy Tùng

Đăng ngày: 19 Aug 2022

Lưu về Facebook:
Hình minh họa Cho hình hộp $\large ABCD.A'B'C'D'$ có đáy $\large ABCD$ là hình thoi

Câu hỏi:

Cho hình hộp ABCD.ABCD có đáy ABCD là hình thoi tâm O, cạnh a, góc ABC^=60. Biết rằng AO(ABCD) và cạnh bên AA hợp với đáy một góc bằng 60o. Thể tích của khối đa diện OABCD bằng

Đáp án án đúng là: C

Lời giải chi tiết:

Hình đáp án 1. Cho hình hộp $\large ABCD.A'B'C'D'$ có đáy $\large ABCD$ là hình thoi

Dễ dàng tính được V=SABCDAO=3a34

Ta có V=VO.ABCD+VAAD.BBC+VC.BOC+VD.AOD+VO.CDDC

=VO.ABCD+12V+2.112V+16V

Suy ra VO.ABCD=V6=a38

Đáp án C