MỤC LỤC
Cho hai số thực $\large a, b$ thỏa mãn $\large \dfrac {1}{3} < b < a < 1$ và biểu thức $\large P = log_{a} (\dfrac {3b - 1}{4a^{3}}) + 12log^{2}_{\dfrac {b}{a}}a$ có giá trị nhỏ nhất. Tính $\large \dfrac {b}{a}$
Lời giải chi tiết:
Ta có: $\large 4b^{3} - 3b + 1 = (b + 1)(2b - 1)^{2} \geq 0$; với mọi $\large b \in (\dfrac {1}{3};1)$
Suy ra: $\large 3b - 1 \leq 4b^{3} \Rightarrow log_{a} (\dfrac {3b - 1}{4a^{3}}) \geq log_{a} \dfrac {4b^{3}}{4a^{3}}$, do $\large a \in (\dfrac {1}{3};1)$
$\large \Rightarrow P \geq 3log_{a} (\dfrac {b}{a}) + 12log^{2}_{\dfrac {b}{a}}a =$ $\large 3 \begin{bmatrix} \dfrac {1}{2} log_{a} (\dfrac {b}{a}) + \dfrac {1}{2} log_{a} (\dfrac {b}{a}) + \dfrac {4}{log_{a}^{2} (\dfrac {b}{a})} \end{bmatrix}$
$\large \geq 3.3 \sqrt[3]{\dfrac {1}{2} log_{a} (\dfrac {b}{a}) . \dfrac {1}{2} log_{a} (\dfrac {b}{a}) . \dfrac {4}{log_{a}^{2} (\dfrac {b}{a})}} = 9$
$\large P_{min} = 9 \Leftrightarrow \left\{\begin{matrix} b = \dfrac {1}{2} \\ \dfrac {1}{2} log_{a} (\dfrac {b}{a}) = \dfrac {4}{log_{a}^{2} (\dfrac {b}{a})} \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} b = \dfrac {1}{2} \\ log_{a} (\dfrac {b}{a}) = 2 \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} b = \dfrac {1}{2} \\ \dfrac {b}{a} = a^{2} \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} b = \dfrac {1}{2} \\ a = \dfrac {1}{\sqrt[3]{2}} \end{matrix}\right.$
Vậy $\large \dfrac {b}{a} = \dfrac {1}{\sqrt[3]{4}}$
Xem thêm các bài tiếp theo bên dưới