Công thức toán học không thể tải, để xem trọn bộ tài liệu hoặc in ra làm bài tập, hãy tải file word về máy bạn nhé
ĐỀ CƯƠNG ÔN TẬP HỌC KÌ 2
Câu 1.1_NB: Phát biểu nào sau đây là sai ?
A. . B. (là hằng số ). C. . D. .
Câu 1.2_NB: Tìm A. B. C. D.
Câu 1.3_NB: Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
1. với nguyên dương. 2. nếu . 3. nếu
A. . B. . C. . D. .
Câu 1.4_NB: Cho dãy số thỏa mãn Giá trị của bằng
A. B. C. D.
Câu 2.1_NB: Trong các dãy số sau, dãy số nào có giới hạn 0?
A. B. C. D.
Câu 2.2_NB: Tìm giới hạn: lim A. –3. B. 4. C. 2. D.
Câu 2.3_NB: Tìm giới hạn: lim A. B. 4. C. 2. D.
Câu 2.4_NB: Tìm giới hạn: lim A. B. 4. C. 2. D.
Câu 3.1_ NB: bằng: A. -5+2m. B. C. 2m. D. -3.
Câu 3.2_ NB: Tìm giới hạn: A. 1-3m. B. 1+3m. C. -1-3m. D. -2.
Câu 3.3_ NB: Biết , với là số nguyên tố. Tính a+b. A. B. C. D.
Câu 3.4_ NB: Biết với . Tính a + b. A. B. C. D.
Câu 4.1_ NB: Cho hai hàm số thỏa mãn và Giá trị của bằng: A. . B. . C. . D. .
Câu 4.2_ NB: Cho hai hàm số thỏa mãn và Giá trị của bằng: A. B. C. D.
Câu 4.3_ NB: Hãy chọn phương án đúng trong các phương án sau:
A. B. C. D.
Câu 4.4_ NB: bằng: A. 2. B. C. D. 0.
Câu 5.1_NB: Hàm số nào dưới đây gián đoạn tại điểm
A. B. C. D.
Câu 5.2_NB: Hàm số nào dưới đây gián đoạn tại điểm
A. B. C. D.
Câu 5.3_NB: Hàm số nào dưới đây liên tục tại điểm
A. B. C. D.
Câu 5.4_NB: Hàm số nào dưới đây liên tục tại điểm
A. B. C. D.
Câu 6.1_ TH: Tính A.. B. C. D.
Câu 6.2_ TH: Biết . Khi đó a nhận giá trị: A. 1 B. C. 2. D. -1.
Câu 6.3_ TH: Tìm hàm số thỏa mãn
A. B.
C. D.
Câu 6.4_ TH: Tìm giới hạn . A. +∞. B. –∞. C. D.
Câu 7.1_ TH: Cho hàm số Tìm m để hàm số liên tục tại .
A. B. C. D.
Câu 7.2_ TH: Tìm m để hàm số liên tục tại x = 1.
A. B. Không có m thỏa mãn. C. D.
Câu 7.3_ TH: Với giá trị nào của a thì hàm số liên tục tại?
A. B. C. D.
Câu 7.4_ TH: Với giá trị nào của a thì hàm số liên tục tại điểm x0 = 1 .
A. B. C. D.
Câu 8.1_NB: Cho hàm số Giả sử là số gia của đối số tại Tính tỉ số
A. . B. . C. . D. .
Câu 8.2_NB: Số gia Δy của hàm số tại điểm x0 = 1 là:
A. B. C. D.
Câu 8.3_NB: Cho hàm số Giả sử là số gia của đối số tại Chọn khẳng định đúng trong các khẳng định sau:
A. B.
C. D.
Câu 8.4_NB: Cho hàm số và . Chọn khẳng định đúng trong các khẳng định sau:
A. B. C. D. không tồn tại.
Câu 9.1_ TH: Hệ số góc của tiếp tuyến với đồ thị hàm số tại điểm có hoành độ bằng 4 là số Giá trị của là: A. B. C. D.
Câu 9.2_ TH: Tiếp tuyến với đồ thị hàm số y=f(x) = tại điểm có hoành độ x0 = -1 có hệ số góc bằng: A. -1. B. -2. C. 2. D. 1.
Câu 9.3_ TH: Hệ số góc của tiếp tuyến với đồ thị hàm số tại điểm có hoành độ bằng là: A. B. C. D. .
Câu 9.4_ TH: Tìm hệ số góc của tiếp tuyến với đồ thị hàm số y = tanx tại điểm có hoành độ x = .
A. k = 1. B. k = C. k = D. 2.
Câu 10.1_NB: Đạo hàm của hàm số (với x>0) là:
A. B. C. D.
Câu 10.2_NB: Tính , biết A. B. C. D.
Câu 10.3_NB: Đạo hàm của hàm số là:
A. B. C. D.
Câu 10.4_NB: Cho hàm số y= f(x) = ax + b, với a, b là hai số thực đã cho. Chọn câu đúng:
A. B. C. D.
Câu 11.1_NB: Cho hàm số xác định trên khoảng và . Giả sử các giới hạn (hữu hạn) sau đây tồn tại, giới hạn nào là đạo hàm của hàm số tại điểm ?
A. B. C. D.
Câu 11.2_NB: Giả sử , là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định và là hằng số. Mệnh đề nào sau đây là sai?
A. . B. . C. . D. .
Câu 11.3_NB: Giả sử , là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Mệnh đề nào sau đây là đúng?
A. . B. . C. . D. .
Câu 11.4_NB: Giả sử , là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định và là hằng số. Mệnh đề nào sau đây là sai?
A. . B. , với
C. ,, n>1. D. , với
Câu 12.1_NB: Với hàm số , giá trị bằng A. B. C. D.
Câu 12.2_NB: Với hàm số , giá trị bằng A. B. C. D.
Câu 12.3_NB: Với hàm số , giá trị bằng A. B. C. D.
Câu 12.4_NB: Với hàm số , giá trị bằng A. B. C. D.
Câu 13.1_NB: Cho hàm số và một số thực tùy ý. Tính
A. B. C. D.
Câu 13.2_NB: Cho hàm số có , số gia của đối số tại bằng thì số gia tương ứng của hàm số là
A. . B.. C. . D.
Câu 13.3_NB: Giả sử , là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Chọn khẳng định đúng trong các khẳng định sau:
A. . B. . C. . D. .
Câu 13.4_NB: Cho hàm số với a, b là hằng số và . Chọn câu đúng:
A. B. C. D. không tồn tại.
Câu 14.1_NB: Cho hàm số . Giá trị bằng: A. 2. B. 6. C. – 4. D. 3.
Câu 14.2_NB: Cho hàm số . Phương trình y' = 0 có tập nghiệm là:
A. {-1; 2}. B. {-1; 3}. C. {0; 4}. D. {1; 2}.
Câu 14.3_NB: Biết . Tìm .
A. . B. . C. . D.
Câu 14.4_NB: Biết . Tìm . A. B.. C. . D.
Câu 15.1_NB: Cho hàm số . Khi đó bằng:
A. . B. . C. . D. .
Câu 15.2_NB: Đạo hàm của hàm số là:
A. . B. . C. . D. .
Câu 15.3_NB: Cho hàm số . Khi đó bằng:
A. . B. . C. . D. .
Câu 15.4_NB: Cho hàm số . Giá trị bằng:
A. 4. B. 14. C. 15. D. 24.
Câu 16.1_ TH: Hàm số có đạo hàm là:
A. B. C. D.
Câu 16.2_ TH: Cho hàm số (với ). Khi đó bằng
A. B. C. D.
Câu 16.3_ TH: Cho hàm số . Đạo hàm của hàm số là:
A. . B. C. D.
Câu 16.4_ TH: Hàm số f(x) = xác định trên . Đạo hàm của hàm số f(x) là:
A. f/(x) = x + -2. B. f/(x) = x C. f/(x) = D. f/(x) = 1
Câu 17.1_ TH: Cho hàm số . Tính giá trị của biểu thức
A. B. C. D.
Câu 17.2_TH: Cho hàm số . Biết Khi đó bằng:
A. . B. . C. . D. .
Câu 17.3_ TH: Cho Biết . Khi đó bằng:
A. . B. . C. . D. .
Câu 17.4_ TH: Đạo hàm của hàm số là . Tính . A. . B. . C. . D. .
Câu 18.1_NB: Hàm số có đạo hàm là:
A. . B. . C. . D. .
Câu 18.2_NB: Hàm số có đạo hàm là:
A. . B. C. . D.
Câu 18.3_NB: Hàm số y = cosx có đạo hàm là:
A. y/ = sinx. B. y/ = - sinx. C. y/ = - cosx. D.
Câu 18.4_NB: Hàm số y = cotx có đạo hàm là:
A. y/ = - tanx. B. y/ = C. y/ = - D. y/ = 1 + cot2x.
Câu 19.1_NB: Tính đạo hàm của hàm số
A. B. C. D.
Câu 19.2_NB: Tính đạo hàm của hàm số
A. B. C. D.
Câu 19.3_NB: Tính đạo hàm của hàm số
A. B. C. D.
Câu 19.4_NB: Tính đạo hàm của hàm số
A. B.
C. D.
Câu 20.1_NB: Cho . Tính . A. B. C. D.
Câu 20.2_NB: Cho . Tính . A. B. C. D.
Câu 20.3_NB: Cho . Tính . A. B. C. D.
Câu 20.4_NB: Cho . Tính . A. B. C. D.
Câu 21.1_ TH: Cho hàm số . Tính y’.
A. B. C. D.
Câu 21.2_ TH: Tính đạo hàm của hàm số .
A. B. C. D.
Câu 21.3_ TH: Đạo hàm của hàm số là:
A. B. C. D.
Câu 21.4_ TH: Cho Tính . A. 4. B. C. - D. -4.
Câu 22.1_ TH: Tính đạo hàm của hàm số
A. B. C. D.
Câu 22.2_ TH: Tính đạo hàm của hàm số thì kết quả đúng là
A.. B. .
C.. D..
Câu 22.3_ TH: Cho hàm số . Tính
A. B. C. D.
Câu 22.4_ TH: Cho Giá trị bằng: A.4. B. C. D.
Câu 23.1_ TH: Hàm số có đạo hàm là:
A. B. C. D.
Câu 23.2_TH: Hàm số y = x2.cosx có đạo hàm là:
A. y/ = 2xcosx – x2sinx. B. y/ = 2xcosx + x2sinx.
C. y/ = 2xsinx - x2cosx. D. y/ = 2xsinx + x2cosx.
Câu 23.3_ TH: Hàm số có đạo hàm là:
A. B. C. D.
Câu 23.4_ TH: Hàm số y = có đạo hàm là:
A. B. C. D.
Câu 24.1_ TH: Hàm số có đạo hàm cấp hai là:
A. B. C. D.
Câu 24.2_ TH: Hàm số y = (x2 + 1)3 có đạo hàm cấp ba là:
A. y/// = 12(x2 + 1). B. y/// = 24(x2 + 1). C. y/// = 24x(5x2 + 3). D. y/// = -12(x2 + 1).
Câu 24.3_ TH: Hàm số y = có đạo hàm cấp hai bằng:
A. . B. C. . D.
Câu 24.4_ TH: Cho hàm số f(x) = (2x+5)5. Có đạo hàm cấp 3 bằng:
A. f///(x) = 80(2x+5)3 B. f///(x) = 480(2x+5)2 C. f///(x) = -480(2x+5)2 D. f///(x) = -80(2x+5)3
Câu 25.1_ TH: Cho hàm số y = sinx. Chọn câu sai:
A. B. C. D.
Câu 25.2_ TH: Cho hàm số y = f(x) = xét 2 mệnh đề:
(I): y// = f//(x) = (II): y/// = f///(x) = .
Mệnh đề nào đúng:
A. Chỉ (I) B. Chỉ (II) đúng C. Cả hai đều đúng D. Cả hai đều sai.
Câu 25.3_ TH: Cho hàm số f(x) = (x+1)3. Giá trị f//(0) bằng:
A. 3 B. 6 C. 12 D. 24
Câu 25.4_ TH: Cho hàm số y = f(x) = (ax+b)5 (a, b là tham số). Tính f(10)(1).
A. f(10)(1)=0. B. f(10)(1) = 10a + b. C. f(10)(1) = 5a. D. f(10)(1)= 10a .
Câu 26.1_NB: Cho đường thẳng có véc-tơ chỉ phương . Véc-tơ nào sau đây không là véc-tơ chỉ phương của ? A. B. C. D.
Câu 26.2_NB: Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Khẳng định nào sau đây là sai ?
A. B. .
C. Ba véc-tơ đồng phẳng. D. Ba véc-tơ đồng phẳng.
Câu 26.3_NB: Cho hình hộp ABCD.EFGH. Các vectơ có điểm đầu và điểm cuối là các đỉnh của hình hộp và bằng vectơ là:
A. . B. . C. . D. .
Câu 26.4_NB: Trong các mệnh đề sau, mệnh đề nào sai?
A. Từ hệ thức ta suy ra được đồng phẳng.
B. Ba véc tơ đồng phẳng nếu giá của chúng cùng song song với một mặt phẳng.
C. Cho hai véc tơ không cùng phương và véc tơ . Khi đó ba vec tơ đồng phẳng khi chỉ khi có cặp số m, n sao cho .
D. Ba véc tơ đồng phẳng khi và chỉ khi hai trong ba véc tơ đó cùng phương.
Câu 26.5: Cho hình hộp . Khẳng định nào sau đây là đúng ?
A. . B. .
C. . D. .
Câu 27.1_NB: Trong các công thức sau, công thức nào đúng ?
A. . B. . C. . D. .
Câu 27.2_NB: Góc giữa hai đường thẳng bất kỳ trong không gian là góc giữa
A. Hai đường thẳng cắt nhau và không song song với chúng.
B. Hai đường thẳng lần lượt vuông góc với chúng.
C. Hai đường thẳng cùng đi qua một điểm và lần lượt song song (hoặc trùng) với chúng.
D. Hai đường thẳng cắt nhau và lần lượt vuông góc với chúng.
Câu 27.3_NB: Cho hai đường thẳng a và b vuông góc với nhau. Biết đường thẳng c vuông góc với a. Hãy tìm mệnh đề đúng trong các mênh đề sau?
A. c vuông góc với b. B. c// b. C. Cả A và B đúng. D. Tất cả đều sai.
Câu 27.4_NB: Trong không gian cho hai đường thẳng , lần lượt có vectơ chỉ phương là
Gọi là góc giữa hai đường thẳng và . Khẳng định nào sau đây là đúng:
A. B. C. D.
Câu 28.1_TH: Cho tứ diện đều ABCD có cạnh . Khi đó bằng
A. B. C. D.
Câu 28.2_TH: Cho hình lập phương ABCD. EFGH cạnh a . Ta có bằng:
A. B. C. D.
Câu 28.3_TH: Cho hình lập phương ABCD. EFGH cạnh a. Ta có bằng:
A. 2 B. C. D.
Câu 28.4_TH: Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc và đều có độ dài bằng 1. Gọi M là trung điểm của cạnh AB. Khi đó bằng:
A. B. . C. . D. .
Câu 29.1_NB: Trong các mệnh đề dưới đây, mệnh đề nào đúng?
A. Hai đường thẳng cùng vuông góc với một mặt phẳng thì song song.
B. Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song.
C. Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song.
D. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song.
Câu 29-2_NB: Trong các mệnh đề dưới đây, mệnh đề nào đúng?
A. Cho hai đường thẳng song song, đường thẳng nào vuông góc với đường thẳng thứ nhất thì cũng vuông góc với đường thẳng thứ hai.
B. Trong không gian, hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì song song với nhau.
C. Hai đường thẳng phân biệt vuông góc với nhau thì chúng cắt nhau.
D. Hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì vuông góc với nhau.
Câu 29.3_NB: Trong các mệnh đề sau đây, mệnh đề nào đúng?
A. Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.
B. Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc với nhau thì song song với đường thẳng còn lại.
C. Hai đường thẳng cùng vuông góc với một đường thẳng thì vuông góc với nhau.
D. Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng kia.
Câu 29.4_NB: Trong các mệnh đề dưới đây, mệnh đề nào đúng ?
A. Hai đường thẳng cùng vuông góc với một mặt phẳng thì cắt nhau.
B. Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song.
C. Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song.
D. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song.
Câu 30.1_TH: Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA = SB = SC = SD. Tìm khẳng định sai trong các khẳng định sau:
A. B. C. A.
Câu 30.2_TH: Cho hình chóp S.ABC có các cạnh SA, SB , SC đôi một vuông góc và
SA = SB = SC. Gọi I là trung điểm của AB . Khi đó góc giữa hai đường thẳng SI và BC bằng:
A. B. C. D.
Câu 30.3_TH: Cho hình lập phương ABCD A’B’C’D’ có cạnh bằng a. Góc giữa hai đường thẳng CD’ và A’C’ bằng:
A. B. C. D.
Câu 30.4_TH: Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC. Khẳng định nào sau đây đúng ?
A. B. C. D.
Câu 31.1_TH: Cho hình chóp S.ABCD có đáy ABCD là hình vuông và . Tìm khẳng định đúng trong các khẳng định sau:
A. B. C. D.
Câu 31.2_TH: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, . Khẳng định nào sau đây đúng ?
A. B. C. D.
Câu 31.3_TH: Cho hình lập phương ABCD.MNPQ. Khẳng định nào sau đây sai?
A. B. C. D.
Câu 31.4_TH: Cho tứ diện SABC có tam giác ABC vuông tại B và . Hỏi tứ diện SABC có bao nhiêu mặt là tam giác vuông? A. 4. B. 1. C. 2. D. 3.
Câu 32.1_NB: Chọn khẳng định sai trong các khẳng định sau?
A. Hai mặt phẳng vuông góc thì chúng cắt nhau.
B. Hai mặt phẳng cắt nhau thì không vuông góc.
C. Hai mặt phẳng vuông góc thì góc giữa chúng bằng .
D. Hai mặt phẳng có góc giữa chúng bằng thì chúng vuông góc.
Câu 32.2_NB: Trong các mệnh đề sau, mệnh đề nào đúng?
A. Hai mặt phẳng cùng vuông góc với một mặt phẳng thứ ba thì vuông góc với nhau.
B. Hai mặt phẳng vuông góc với nhau thì mọi đường thẳng nằm trong mặt phẳng này sẽ vuông góc với mặt phẳng kia.
C. Hai mặt phẳng cùng vuông góc với một mặt phẳng thì song song với nhau.
D. Cả ba mệnh đề trên đều sai.
Câu 32.3_NB: Tính chất nào sau đây không phải là tính chất của hình lăng trụ đứng?
A. Các mặt bên của hình lăng trụ đứng vuông góc với nhau.
B. Các mặt bên của hình lăng trụ đứng là những hình chữ nhật.
C. Các cạnh bên của hình lăng trụ đứng bằng nhau và song song với nhau.
D. Hai đáy của hình lăng trụ đứng có các cạnh tương ứng song song và bằng nhau.
Câu 32.4_NB: Cho lăng trụ đứng có đáy là tam giác đều cạnh bằng a, mặt phẳng tạo với đáy góc . Gọi S là diện tích tam giác , giá trị của S là
A. . B. . C. . D. .
Câu 33.1_TH: Cho hình chóp SABC có đáy là tam giác đều cạnh a, , góc giữa hai mặt phẳng (SBC) và (ABC) bằng . Tính diện tích S của tam giác SBC.
A. B. C. D.
Câu 33.2_TH: Cho hình chóp có đáy là hình vuông cạnh a, . Góc giữa hai mặt phẳng vàbằng . Diện tích tam giác bằng:
A. B. C. D.
Câu 33.3_TH: Cho hình chóp có đáy là hình chữ nhật, vuông góc với đáy. Góc giữa hai mặt phẳng là góc và
A. B. C. D.
Câu 33.4_TH: Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SB = SD. Khẳng định nào sau đây đúng ?
A. B. C. D.
Câu 34.1_NB: Cho hình hộp chữ nhật ABCD.EFGH. Khoảng cách giữa đường thẳng AB và mặt phẳng (CDHG) bằng: A. AB. B. AC. C. AD. D. BD.
Câu 34.2_NB: Cho hình lập phương ABCD.EFGH cạnh a. Khoảng cách giữa hai đường thẳng AB và GH bằng: A. B. C. a D.
Câu 34.3_NB: Cho lăng trụ đứng ABC.A’B’C’. Khoảng cách giữa hai mặt phẳng (ABC) và (A’B’C’) bằng:
A. BA’. B. AA’. C. CA’. D. AB.
Câu 34.4_NB: Cho tứ diện đều Gọi G là trọng tâm của tam giác BCD. Khoảng cách từ A đến mặt phẳng (BCD) bằng:
A. AB. B. AC. C. AD. D. AG.
Câu 35.1_TH: Cho lăng trụ đứng ABC.A’B’C’ có tất cả các cạnh đều bằng 2a . Khoảng cách giữa hai đường thẳng BC và AA’ bằng:
A. B. C. D.
Câu 35.2_TH: Cho hình chóp có đáy là hình chữ nhật có cạnh , . Khoảng cách giữa hai đường thẳng chéo nhau và bằng:
A. . B. . C. D. .
Câu 35.3_TH: Cho hình chóp có đáy là hình vuông cạnh bằng , hai mặt phẳng và cùng vuông góc với mặt phẳng đáy, Khoảng cách từ điểm A đến mặt phẳng bằng: A. B. C. D.
Câu 35.4_TH: Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng 2a, = , SA = Khoảng cách từ điểm A đến mặt phẳng (SBD) bằng:
A. B. C. D.
-------------------------------------------------------------------------------------
ĐẶC TẢ PHẦN TỰ LUẬN
Câu 1 (1điểm)-VDT: Xác định các hệ số a, b, c của hàm số (bậc 3 hoặc trùng phương), biết và đồ thị của đi qua 2 điểm A, B cho trước.
Câu 2 (1điểm)-VDT: Cho hình chóp đều S.ABCD (hoặc hình chóp đều S.ABC), có độ dài cạnh đáy bằng ka ( a, k dương; ka khác 1) và góc giữa cạnh bên và mặt đáy hoặc giữa mặt bên và mặt đáy bằng 300 hoặc 450 hoặc 600. Tính độ dài đường cao của hình chóp (đã cho) theo a.
Câu 3 ( 1điểm)-VDC:
a) (0,5đ) Chứng minh phương trình có nghiệm hoặc có ít nhất n nghiệm ( với n=2 hoặc n=3).
b) (0,5đ) Viết phương trình tiếp tuyến của đồ thị hàm số (bậc 3, bậc 1/1 hoặc trùng phương) thỏa mãn điều kiện cho trước.
ĐỀ MINH HỌA CỦA BỘ GIÁO DỤC VÀ ĐÀO TẠO
Câu 1: Cho hàm số với Hãy xác định các số biết rằng và đồ thị của hàm số đi qua các điểm và
Câu 2: Cho hình chóp đều có cạnh đáy bằng góc giữa cạnh bên và mặt phẳng đáy bằng Tính độ dài đường cao của hình chóp đã cho.
Câu 3: a) Giả sử hai hàm số và đều liên tục trên đoạn và Chứng minh phương trình luôn có nghiệm thuộc đoạn
b) Cho hàm số có đồ thị Tìm điểm thuộc sao cho tiếp tuyến của tại tạo với hai trục tọa độ một tam giác vuông cân.
-------------HẾT ----------
Xem thêm các bài tiếp theo bên dưới