Loại 1: Tính I=β∫αdx(ax+b)k=1aβ∫α(ax+b)−k.adx=1a(1−k).(ax+b)−k+1|βα
Loại 2: Tính I=β∫αdxax2+bx+c(a≠0)
+Nếu Δ>0
1ax2+bx+c=1a(x−x1)(x−x2)=1a(x1−x2)(1x−x1−1x−x2)
thì I=1a(x1−x2)β∫α(1x−x1−1x−x2)dx=1a(x1−x2)[ln|x−x1|−ln|x−x2|]|βα=1a(x1−x2)ln|x−x1x−x2||βα
+Nếu Δ=0:
1ax2+bx+c=1a(x−x0)2(x0=−b2a)
thìI=β∫αdxax2+bx+c=1aβ∫αdx(x−x0)2=−1a(x−x0)|βα
+Nếu Δ<0:
I=1aβ∫αdx(x+m)2+n2;ta đổi biến số:x+m=ntant
1∫13x−52x+2dx=1∫13x+1−62x+2dx=1∫13(12−3x+1)dx=(12x−3ln|x+1|)|113
=12−3ln2−16+3ln43=13+3ln23=13+ln827⇒{a=13b=827⇒ab=881
2∫022x+1dx=2∫022x+1d(2x+1)=ln|2x+1||20=ln5.
Ta có: 2∫0dxx+3=ln|x+3||20=ln5−ln3=ln53 .