Công thức toán học không thể tải, để xem trọn bộ tài liệu hoặc in ra làm bài tập, hãy tải file word về máy bạn nhé
Ngày soạn: 3/9/2018 CHỦ ĐỀ: HÀM SỐ LƯỢNG GIÁC
I. Mục tiêu bài học:
1. Về kiến thức:
+/ Nắm được định nghĩa , tính tuần hoàn , chu kỳ , tính chẵn lẻ , tập giá trị , tập xác định , sự biến thiên và đồ thị của các hàm số lượng giác.
2. Về kỹ năng:
+/ Tìm được tập xác định của các hàm số đơn giản
+/ Nhận biết được tính tuần hoàn và xác định được chu kỳ của một số hàm số đơn giản
+/Nhận biết được đồ thị các hàm số lượng giác từ đó đọc được các khoảng đồng biến và nghịch biến của hàm số
+/Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
+/Ttìm số giao điểm của đường thẳng ( cùng phương với trục hoành) với đồ thị hàm số
3. Thái độ:
+/ Phân tích vấn đề chi tiết, hệ thống rành mạch.
+/ Tư duy các vấn đề logic, hệ thống.
+/ Nghiêm túc, tích cực, chủ động, độc lập và hợp tác trong hoạt động nhóm
+/ Say sưa, hứng thú trong học tập và tìm tòi nghiên cứu liên hệ thực tiễn
+ /Bồi dưỡng đạo đức nghề nghiệp, tình yêu thương con người, yêu quê hương, đất nước
4. Các năng lực chính hướng tới sự hình thành và phát triển ở học sinh:
- Năng lực hợp tác: Tổ chức nhóm học sinh hợp tác thực hiện các hoạt động.
- Năng lực tự học, tự nghiên cứu: Học sinh tự giác tìm tòi, lĩnh hội kiến thức và phương pháp giải quyết bài tập và các tình huống.
- Năng lực giải quyết vấn đề: Học sinh biết cách huy động các kiến thức đã học để giải quyết các câu hỏi. Biết cách giải quyết các tình huống trong giờ học.
- Năng lực sử dụng công nghệ thông tin: Học sinh sử dụng máy tính, mang internet, các phần mềm hỗ trợ học tập để xử lý các yêu cầu bài học.
- Năng lực thuyết trình, báo cáo: Phát huy khả năng báo cáo trước tập thể, khả năng thuyết trình.
- Năng lực tính toán.
II. Chuẩn bị của GV và HS
1. Chuẩn bị của GV:
+/ Soạn giáo án
+/ Chuẩn bị phương tiện dạy học: Phấn, thước kẻ, máy chiếu...
2.Chuẩn bị của HS:
+/ Đọc trước bài
+/ Làm việc nhóm ở nhà, trả lời các câu hỏi được giáo viên giao từ tiết trước (thuộc phần HĐKĐ), làm thành file trình chiếu.
+/ Kê bàn để ngồi học theo nhóm
+/ Chuẩn bị bảng phụ, bút viết bảng, khăn lau bảng …
III. Chuỗi các hoạt động học
HÀM SỐ LƯỢNG GIÁC
1.HOẠT ĐỘNG TIẾP CẬN BÀI HỌC (7 phút)
a)Mục tiêu: Tạo tình huống để học sinh tiếp cận đến khái niệm hàm số lượng giác
b) Nội dung,Phương thức tổ chức: Cho sinh quan sát hiện tượng,.
+ Chuyển giao: Giáo viên đưa ra hiện tượng trong vật lý
Khi ta gõ trống, gảy đàn, thổi sáo hay mở miệng ra nói chuyện, tai ta sẽ nghe và cảm nhận được âm thanh phát ra. Vật tạo ra âm thanh được gọi là nguồn phát âm, hay nguồn âm. Âm thanh là dao động cơ lan truyền trong môi trường và tai ta cảm nhận được. Âm thanh nói riêng và các dao động cơ nói chung không lan truyền qua chân không vì không có gì để truyền sóng. Âm thanh là phương tiện trao đổi thông tin, liên lạc với nhau phổ biến nhất của con người, bên cạnh phương tiện hình ảnh. Như vậy nghiên cứu âm thanh có hai mặt: Đặc trưng vật lý (lý tính) và đặc trưng sinh học. Vật lý khách quan: nguồn tạo ra âm thanh, tính chất lan truyền, đặc tính âm thanh...
Nếu ta biểu diễn tín hiệu của âm thanh trên gắn vào hệ trục tọa độ như hình vẽ trên ( giả thiết là các tập đối xứng và )
CH1:Ta có nhận xét gì về đồ thị hàm số trên các đoạn ?
CH2:Liệu có xác định đồ thị trên là đồ thị của hàm số nào mà chúng ta đã được học không?
+ Thực hiện: Học sinh suy nghĩ
+ Báo cáo, thảo luận: Gọi một học sinh trình bày trước lớp, các học sinh khác phản biện và góp ý kiến.
+Đánh giá : Giáo viên đánh giá chung và giải thích các vấn đề học sinh chưa giải quyết được
c)Sản phẩm:
- Trên các đoạn đó đồ thị có hình dạng giống nhau
- Qua phép tịnh tiến theo biến đồ thị đoạn thành đoạn và biến đoạn thành …
- Chúng ta thấy các đồ thị đã học không có đồ thị nào có hình dạng như thế. Vậy chúng ta sẽ nghiên cứu tiếp các hàm số đồ thị có tính chất trên.
2.HOẠT ĐỘNG HÌNH THÀNH KIẾN THỨC
2.1. HTKT1: Định nghĩa(25 phút)
a) Hoạt động 2.1.1: Tiếp cận và hình thành kiến thức (10 phút)
- Mục tiêu: Xây dựng các hàm số lượng giác
- Nội dung, phương thức tổ chức:Giáo viên trình chiếu câu hỏi
+ Chuyển giao : Học sinh làm việc theo cá nhân rồi trả lời câu hỏi
Cho đường tròn lượng giác ( Hình vẽ bên cạnh).Điểm M nằm trên đường tròn đó.Điểm lần lượt là hình chiếu vuông góc của điểm M trên đường tròn. Tia OM lần lượt cắt trục At và Bs tại T và S . Giả sử sđ. CH1)Hãy chỉ ra đâu là trục sin, côsin, tang,côtang ? CH2)Hãy tính CH3)Cứ một giá trị của thì xác định được bao nhiêu giá trị của CH4)Tìm các giá trị của để xác định. |
+ /Thực hiện:Học sinh suy nghĩ
+/ Báo cáo, thảo luận: Chỉ định một học sinh bất kì trình bày lời giải, các học sinh khác thảo luận để hoàn thiện lời giải.
+ /Đánh giá, nhận xét: Trên cơ sở câu trả lời của học sinh, giáo viên chuẩn hóa lời giải
Chốt kiến thức : - Hàm số có tập xác định là
- Hàm số có tập xác định là
- Hàm số có tập xác định là
b) Hoạt động 2.1.2 Tính chẵn , lẻ của hàm số (10 phút)
-Mục tiêu : Học sinh xác định được tính chẵn lẻ của các hàm số lượng giác
-Nội dung , phương thức tổ chức : Hoạt động nhóm, làm việc độc lập
- GV: chia lớp làm 04 nhóm , giao mỗi nhóm 01 bảng phụ và bút dạ.
- HS: Bầu nhóm trưởng , thư ký
+ /Chuyển giao nhiệm vụ
GV: Yêu cầu HS hoàn thiện nội dung trong bảng
Hàm số | Tập xác định | Tính | So sánh và | Kết luận về tính chẵn lẻ của hàm số |
HS: Nhận nhiệm vụ mà GV giao cho
+/ Thực hiện nhiệm vụ : Các nhóm làm việc , lập báo cáo kết quả trả lời các câu hỏi trên
+/Báo cáo kết quả và thảo luận
-HS : Đứng tại chỗ báo cáo kết quả các nhóm khác theo dõi , thảo luận , đánh giá
- Các nhóm thảo luận , chuẩn bị phương án phản biện
-GV : Quan sát các nhóm hoạt động , hỗ trợ , tư vấn học sinh.
+/ Nhận xét , đánh giá kết quả thực hiện nhiệm vụ (Hình thức : Thuyết trình , chất vấn,…)
- GV đưa ra các tiêu chí đánh giá : Thời gian , kết quả làm việc,…
- GV:Nhận xét thái độ , kết quả làm việc của các nhóm. Nêu các kết luận của các nhóm sai hoặc chưa tìm ra phương án thực nghiệm . Kiểm tra lại sự nắm bắt kiến thức của HS. Chốt lại kiến thức
- HS:Ghi chép kiết thức vào vở.
Chốt kiến thức : Hàm số là hàm số chẵn . Các hàm số là hàm số lẻ
c)Hoạt động 2.1.3 : Củng cố (5 phút)
-Mục tiêu : Học sinh biết được tập xác định của một hàm số có chứa giá trị lượng giác
Biết nhận dạng đâu là hàm số chẵn, đâu là hàm số lẻ
-Nội dung , phương thức tổ chức : Hoạt động nhóm, làm việc độc lập
- GV: chia lớp thành các nhóm nhỏ, mỗi nhóm 2 học sinh, giao mỗi nhóm 01 phiếu học tập có ghi 2 ví dụ
+ /Chuyển giao nhiệm vụ
GV: Yêu cầu HS hoàn thiện nội dung phiếu học tập và trả lời lý do chọn phương án đúng
VD 1: Hàm số nào dưới đây có tập xác định là? . A. B. C. D. VD 2: Hàm số nào là hàm số chẵn trong các hàm số dưới đây ? A. B. C. D. |
HS: Nhận nhiệm vụ mà GV giao cho
+/ Thực hiện nhiệm vụ : Các nhóm làm việc và báo cáo kết quả trả lời các câu hỏi trên
+/Báo cáo kết quả và thảo luận
-HS : Báo cáo kết quả để các nhóm khác theo dõi , thảo luận , đánh giá
- Các nhóm thảo luận , chuẩn bị phương án phản biện
-GV : Quan sát các nhóm hoạt động , hỗ trợ , tư vấn học sinh.
+/ Nhận xét , đánh giá kết quả thực hiện nhiệm vụ (Hình thức : Thuyết trình , chất vấn,…)
- GV đưa ra các tiêu chí đánh giá : Thời gian , kết quả làm việc,…
- GV:Nhận xét thái độ , kết quả làm việc của các nhóm. Nêu các kết luận của các nhóm sai hoặc chưa tìm ra phương án thực nghiệm . Kiểm tra lại sự nắm bắt kiến thức của HS. Chốt lại kiến thức
- HS:Ghi chép kiết thức vào vở.
Chốt kiến thức : VD1: Đáp án A; VD2: Đáp án B
2.1. HTKT2: Tính tuần hoàn của hàm số lượng giác (15 phút )
a) Hoạt động 2.2.1(10 phút)
- Mục tiêu: Nắm được khái niệm hàm số tuần hoàn và chu kỳ T
- Nội dung, phương thức tổ chức:Giáo viên trình chiếu câu hỏi , Học sinh làm việc cá nhân
+/ Chuyển giao: Trả lời các câu hỏi sau
Cho hàm số và . |
CH1: Hãy so sánh và . |
CH 2 : Hãy so sánh và . |
CH 3: Hày so sánh và vói . |
CH 4: Hày so sánh và vói . |
CH 5: Tìm số dương nhỏ nhất thỏa mãn và . |
CH 6: Tìm số dương nhỏ nhất thỏa mãn và . |
+ Thực hiện:Học sinh suy nghĩ để trả lời câu hỏi
+ Báo cáo, thảo luận: Chỉ định một học sinh bất kì trình bày lời giải, các học sinh khác thảo luận để hoàn thiện lời giải.
+ Đánh giá, nhận xét: Trên cơ sở câu trả lời của học sinh, giáo viên chuẩn hóa lời giải
Khái niệm :Hàm số xác định trên tập được gọi là hàm số tuần hoàn nếu có số sao cho với mọi ta có và .
Nếu có số dương nhỏ nhất thỏa mãn các điều kiện trên thì hàm số được gọi là hàm số tuần hoàn với chu kỳ
Kết luận : Hàm số là hàm số tuần hoàn với chu kỳ
Hàm số là hàm số tuần hoàn với chu kỳ
b)Hoạt động 2.2.2:Củng cố - mở rộng (5 phút)
- Mục tiêu : Củng cố định nghĩa hàm số tuần hoàn và mở rông việc tìm chu kỳ tuần hoàn của hàm số
-Nội dung , phương thức tổ chức : Hoạt động nhóm, làm việc độc lập
- GV: chia lớp làm 04 nhóm , giao mỗi nhóm 01 bảng phụ và bút dạ.
- HS: Bầu nhóm trưởng , thư ký
+ /Chuyển giao nhiệm vụ
GV: Yêu cầu HS hoàn thiện nội dung trong bảng
VD 3: Chứng minh rằng hàm số là hàm số tuần hoàn và tìm chu kỳ |
HS: Nhận nhiệm vụ mà GV giao cho
+/ Thực hiện nhiệm vụ : Các nhóm làm việc , lập báo cáo kết quả trả lời các câu hỏi trên
+/Báo cáo kết quả và thảo luận
-HS : Nhóm trưởng gắn bảng phụ đã chuẩn bị lên bảng và trình bày kết quả
- Các nhóm thảo luận , chuẩn bị phương án phản biện
-GV : Quan sát các nhóm hoạt động , hỗ trợ , tư vấn học sinh.
+/ Nhận xét , đánh giá kết quả thực hiện nhiệm vụ (Hình thức : Thuyết trình , chất vấn,…)
- GV đưa ra các tiêu chí đánh giá : Thời gian , kết quả làm việc,…
- GV:Nhận xét thái độ , kết quả làm việc của các nhóm. Nêu các kết luận của các nhóm sai hoặc chưa tìm ra phương án thực nghiệm . Kiểm tra lại sự nắm bắt kiến thức của HS. Chốt lại kiến thức
- HS:Ghi chép kiến thức vào vở.
Với kZ, ta có f( x + k) = sin (2(x + k)) = sin(2x + k2) = sin 2x = f(x), với mọi xR
hàm số là hàm số tuần hoàn
Số dương nhỏ nhất thỏa tính chất trên là T = ( ứng với k = 1)
TIẾT 2
Kiểm tra bài cũ : Hãy ghép các ô với nhau để được một mệnh đề đúng?
A.Hàm số là hàm số chẵn | B.Đồ thị hàm số nhận gốc tọa độ O làm tâm đối xứng. |
C. Hàm số là hàm số lẻ | D. Đồ thị hàm số nhận trục tung làm trục đối xứng. |
2.3 HTKT3 :Sự biến thiên và đồ thị của hàm số
a) Tiếp cận kiến thức
Hoạt động 2.3.1:
-Mục tiêu : Nắm được sự biến thiên của hàm số trên đoạn
- Nội dung , phương thức tổ chức : Giáo viên trình chiếu câu hỏi , gọi Học sinh trả lời.
+/Chuyển giao : Trả lời các câu hỏi trong bảng sau
Cho hàm số | |
CH1:Hãy so sánh và | CH 2:Hãy so sánh và |
CH3:Hãy só sánh và với và | CH4:Hãy só sánh và với và |
+ Thực hiện:Học sinh suy nghĩ để trả lời câu hỏi
+ Báo cáo, thảo luận: Chỉ định một học sinh bất kì trình bày lời giải, các học sinh khác thảo luận để hoàn thiện lời giải.
+ Đánh giá, nhận xét: Trên cơ sở câu trả lời của học sinh, giáo viên chuẩn hóa lời giải
b) Hình thành kiến thức : + Hàm số đồng biến trên và nghịch biến trên
Giáo viên trình chiếu bảng biến thiên và đồ thị của hàm số trên đoạn
+ Đồ thị của hàm số trên đoạn
CH5: Có nhận xét gì về đồ thị hàm số trên các đoạn và ?
Giáo viên trình chiếu đồ thị của hàm số trên đoạn
d) Đồ thị của hàm số trên tập xác định
Dựa vào tính tuần hoàn với chu kỳ . Do đó muốn vẽ đồ thị của hàm số trên tập xác định , ta tịnh tiến tiếp đồ thị hàm số trên đoạn theo các véc tơ và .
Giáo viên trình chiếu đồ thị của hàm số trên tập xác định
CH6: Dựa vào đồ thị hàm số trên tập xác định hãy chỉ ra điểm nằm trên đồ thị có tung độ nhỏ nhất và lớn nhât ?
Giá trị lớn nhất của bằng 1 và giá trị nhỏ nhất bằng -1 . Vậy Tập giá trị của hàm số là .
c) Củng cố
Hoạt động 2.3.2
- Mục tiêu : Củng cố về tập giá trị của của hàm số và vận dụng để tìm giá trị lớn nhất nhỏ nhất của hàm số có chứa sinx
-Nội dung , phương thức tổ chức : Hoạt động nhóm, làm việc theo nhóm
- GV: chia lớp làm 04 nhóm , giao mỗi nhóm 01 bảng phụ và bút dạ.
- HS: Bầu nhóm trưởng , thư ký
+ /Chuyển giao nhiệm vụ
GV: Yêu cầu HS hoàn thiện nội dung trong bảng
Ví Dụ 1: Cho hàm số
|
HS: Nhận nhiệm vụ mà GV giao cho
+/ Thực hiện nhiệm vụ : Các nhóm làm việc , lập báo cáo kết quả trả lời các câu hỏi trên
+/Báo cáo kết quả và thảo luận
-HS : Nhóm trưởng gắn bảng phụ đã chuẩn bị lên bảng và trình bày kết quả
- Các nhóm thảo luận , chuẩn bị phương án phản biện
-GV : Quan sát các nhóm hoạt động , hỗ trợ , tư vấn học sinh.
+/ Nhận xét , đánh giá kết quả thực hiện nhiệm vụ (Hình thức : Thuyết trình , chất vấn,…)
- GV đưa ra các tiêu chí đánh giá : Thời gian , kết quả làm việc,…
- GV:Nhận xét thái độ , kết quả làm việc của các nhóm. Nêu các kết luận của các nhóm sai hoặc chưa tìm ra phương án thực nghiệm . Kiểm tra lại sự nắm bắt kiến thức của HS. Chốt lại kiến thức
- HS:Ghi chép kiến thức vào vở.
2.4 HTKT4: Sự biến thiên và đồ thị của hàm số
a) Tiếp cận
Hoạt động 2.4.1:
-Mục tiêu : Biết được dạng đồ thị của hàm số
-Nội dung , phương thức tổ chức : Giáo viên trình chiếu câu hỏi , gọi học sinh trả lời.
+/Chuyển giao : Trả lời các câu hỏi trong bảng sau
CH1:Hãy so sánh và |
CH2:Từ đồ thị hàm số nêu cách vẽ đồ thị hàm số ( với là hằng số dương) |
CH3:Có thể nêu cách vẽ của đồ thị hàm số thông qua đồ thị hàm số được không? |
+/ Thực hiện : Học sinh suy nghĩ để trả lời câu hỏi
+/ Báo cáo, thảo luận: Chỉ định một học sinh bất kì trình bày lời giải, các học sinh khác thảo luận để hoàn thiện lời giải.
+/ Đánh giá, nhận xét: Trên cơ sở câu trả lời của học sinh, giáo viên chuẩn hóa lời giải
b)Hình thành kiến thức: Tịnh tiến đồ thị hàm số theo véc tơ ( tức là sang bên trái một đoạn có độ dài bằng ) thì ta được đồ thị hàm số .
Giáo viên trình chiếu đồ thị hàm số
c) Củng cố
Hoạt động 2.4.2 :
- Mục tiêu : Củng cố về tập giá trị của của hàm số và vận dụng để tìm giá trị lớn nhất nhỏ nhất của hàm số có chứa sinx
-Nội dung , phương thức tổ chức : Hoạt động nhóm, làm việc theo nhóm
- GV: chia lớp làm 04 nhóm , giao mỗi nhóm 01 bảng phụ và bút dạ.
- HS: Bầu nhóm trưởng , thư ký
+ /Chuyển giao nhiệm vụ
GV: Yêu cầu HS hoàn thiện nội dung trong bảng nhóm 1,2 làm ví dụ 2; nhóm 3,4 làm ví dụ 3
Ví dụ 2.Cho hàm số .Mệnh đề nào dưới đây sai? A.Hàm số đồng biến trên đoạn . B.Hàm nghịch biến trên đoạn . C.Hàm số đồng biến trên đoạn D.Hàm số nghịch biến trên |
Ví dụ 3: Cho hàm số . Mệnh đề nào dưới đây sai? A.Giá trị lớn nhất của hàm số bằng 1 B.Giá trị nhỏ nhất của hàm số bằng -1 C.Đồ thị của hàm số nhận trục Oy làm trục đối xứng D. Đồ thị hàm số đi qua gốc tọa độ |
HS: Nhận nhiệm vụ mà GV giao cho
+/ Thực hiện nhiệm vụ : Các nhóm làm việc , lập báo cáo kết quả trả lời các câu hỏi trên
+/Báo cáo kết quả và thảo luận
-HS : Nhóm trưởng gắn bảng phụ đã chuẩn bị lên bảng và trình bày kết quả
- Các nhóm thảo luận , chuẩn bị phương án phản biện
-GV : Quan sát các nhóm hoạt động , hỗ trợ , tư vấn học sinh.
+/ Nhận xét , đánh giá kết quả thực hiện nhiệm vụ (Hình thức : Thuyết trình , chất vấn,…)
- GV đưa ra các tiêu chí đánh giá : Thời gian , kết quả làm việc,…
- GV:Nhận xét thái độ , kết quả làm việc của các nhóm. Nêu các kết luận của các nhóm sai hoặc chưa tìm ra phương án thực nghiệm . Kiểm tra lại sự nắm bắt kiến thức của HS. Chốt lại kiến thức
- HS:Ghi chép kiến thức vào vở.
d) Vận dụng, mở rộng
Hoạt động 2.4.3 :
- Mục tiêu : Vận dụng đồ thị của của hàm số để tìm số nghiệm của phương trình
Giải bài toán thực tế
-Nội dung , phương thức tổ chức : Hoạt động nhóm, làm việc theo nhóm
- GV: chia lớp làm 04 nhóm , giao mỗi nhóm 01 bảng phụ và bút dạ.
- HS: Bầu nhóm trưởng , thư ký
+ /Chuyển giao nhiệm vụ
GV: Yêu cầu HS hoàn thiện nội dung trong bảng nhóm 1,2 làm ví dụ 4; nhóm 3,4 làm ví dụ 5
Ví dụ 4: Tìm số nghiệm của phương trình trên khoảng . A.1 B.2 C.3 D.4 |
Ví dụ 5 Giả sử một con tầu vũ trụ được phóng lên từ mũi Ca-na-vơ – ran (Cânveral) ở Mỹ . Nó chuyển động theo một quỹ đạo được mô tả trên một bản đồ phẳng (quanh đường xích đạo ) của mặt đất như hình vẽ bên . Điểm M mô tả cho con tầu , đường thẳng mô tả cho đường xích đạo . Khoảng cách h (kilômet) từ M đến được tính theo công thức , trong đó Với t (phút)là thời gia trôi qua kể từ khi con tầu đi vào quỹ đạo , nếu M ở phía trên , nếu M ở phía dưới . Giả thiết con tầu đi vào quỹ đạo ngay từ khi phóng lên mũi Ca-na-vơ – ran (tức là ứng với t=0) . Hãy tính khoảng cách từ điểm C đến đường thẳng , trong đó C là điểm trên bản đồ biểu diễn cho mũi Ca-na-vơ – ran. |
HS: Nhận nhiệm vụ mà GV giao cho
+/ Thực hiện nhiệm vụ : Các nhóm làm việc , lập báo cáo kết quả trả lời các câu hỏi trên
+/Báo cáo kết quả và thảo luận
-HS : Nhóm trưởng gắn bảng phụ đã chuẩn bị lên bảng và trình bày kết quả
- Các nhóm thảo luận , chuẩn bị phương án phản biện
-GV : Quan sát các nhóm hoạt động , hỗ trợ , tư vấn học sinh.
+/ Nhận xét , đánh giá kết quả thực hiện nhiệm vụ (Hình thức : Thuyết trình , chất vấn,…)
- GV đưa ra các tiêu chí đánh giá : Thời gian , kết quả làm việc,…
- GV:Nhận xét thái độ , kết quả làm việc của các nhóm. Nêu các kết luận của các nhóm sai hoặc chưa tìm ra phương án thực nghiệm . Kiểm tra lại sự nắm bắt kiến thức của HS. Chốt lại kiến thức
- HS:Ghi chép kiến thức vào vở.
TIẾT 3
1. Về kiến thức:
Nắm được tập xác định, tập giá trị, tính chẵn lẻ, tính tuần hoàn , chu kỳ , , , sự biến thiên và đồ thị của các hàm số và
2. Về kỹ năng:
- Xác định được tập xác định, tập giá trị của các hàm số và
- Nhận biết được tính tuần hoàn và xác định được chu kỳ của các hàm số và
- Nhận biết được đồ thị các hàm số lượng giác từ đó đọc được các khoảng đồng biến và nghịch biến của hàm số các hàm số và
3. Thái độ:
+/ Phân tích vấn đề chi tiết, hệ thống rành mạch.
+/ Tư duy các vấn đề logic, hệ thống.
+/ Nghiêm túc, tích cực, chủ động, độc lập và hợp tác trong hoạt động nhóm
+/ Say sưa, hứng thú trong học tập và tìm tòi nghiên cứu liên hệ thực tiễn
+ /Bồi dưỡng đạo đức nghề nghiệp, tình yêu thương con người, yêu quê hương, đất nước
4. Các năng lực chính hướng tới sự hình thành và phát triển ở học sinh:
- Năng lực hợp tác: Tổ chức nhóm học sinh hợp tác thực hiện các hoạt động.
- Năng lực tự học, tự nghiên cứu: Học sinh tự giác tìm tòi, lĩnh hội kiến thức và phương pháp giải quyết bài tập và các tình huống.
- Năng lực giải quyết vấn đề: Học sinh biết cách huy động các kiến thức đã học để giải quyết các câu hỏi. Biết cách giải quyết các tình huống trong giờ học.
- Năng lực sử dụng công nghệ thông tin: Học sinh sử dụng máy tính, mang internet, các phần mềm hỗ trợ học tập để xử lý các yêu cầu bài học.
- Năng lực thuyết trình, báo cáo: Phát huy khả năng báo cáo trước tập thể, khả năng thuyết trình.
- Năng lực tính toán.
1. Chuẩn bị của GV:
+/ Soạn KHBH
+/ Chuẩn bị phương tiện dạy học: Phấn, thước kẻ, máy chiếu...
+/ Đọc trước bài
+/ Làm việc nhóm ở nhà, trả lời các câu hỏi được giáo viên giao từ tiết trước (thuộc phần HĐKĐ), làm thành file trình chiếu.
+/ Kê bàn để ngồi học theo nhóm
+/ Chuẩn bị bảng phụ, bút viết bảng, khăn lau bảng …
Tiết 3
HÀM SỐ LƯỢNG GIÁC
HÐ1: KHỞI ĐỘNG. | GỢI Ý |
Hàm số đồng biến hay nghịch biến trong khoảng ? | Hình 1 |
HĐ2: Hình thành kiến thức. | |
2.1 Sự biến thiên của hàm số trong nửa khoảng Từ hình 1), ta thấy với và thì . Điều đó chứng tỏ hàm số đồng biến trên nửa khoảng. Bảng biến thiên 0 +
0 Câu hỏi 1: Dựa vào tính chất hàm số lẻ hãy lập bảng biến thiên của hàm số trong khoảng ? Câu hỏi 2: Để vẽ đồ thị hàm số trên khoảng ta cần vẽ trên đồ thị của nó trên khoảng xác định nào? Đồ thị trên khoảng | |
HÐ3: KHỞI ĐỘNG. GỢI Ý
HĐ4: Hình thành kiến thức. 2.1 Sự biến thiên của hàm số trong nửa khoảng Từ bảng giá trị trên ta thấy: Hàm số nghịch biến trong khoảng Bảng biến thiên 0
Câu hỏi : Để vẽ đồ thị hàm số ta cần vẽ trên đồ thị của nó trên khoảng xác định nào? Đồ thị hàm số trên khoảng
Phát phiếu học tập cho từng hs gồm các câu hỏi trắc nghiệm khách quan. Hs làm bài tập theo từng cá nhân. Câu 1: Mệnh đề nào đúng?
Câu 2: Khẳng định nào đúng?
Câu 3: Tập xác định của hàm số y = tan2x là: A. B. C. D. Câu 4: Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn? A. y = x.cosx B. y = x.tanx C. y = tanx D. Câu 5: Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn? A. y = B. y = tanx + x C. y = x2+1 D. y = cotx HOẠT ĐỘNG LUYỆN TẬP HĐ1. Khởi động Gợi ý
Tìm TXĐ của hàm số HĐ 2. Bài tập Bài tập 1.
Bài tập 2. Gv phát phiếu học tập cho hs gồm các câu hỏi trắc nghiệm khách quan. Câu hỏi 1. Với mọi , tập xác định của hàm số là A. B. C. D. Câu hỏi 2. Hàm số nào sau đây là hàm số chẵn trên TXĐ của nó A. B. C. D. Câu hỏi 3. Tìm chu kì T của hàm số A. B. C. D. Câu hỏi 4. Mệnh đề nào sau đây đúng ?
Câu hỏi 5. Giá trị lớn nhất M của hàm số là A. B. C. D. Hs trả làm bài tập theo cá nhân Hoạt động vận dụng Ví dụ 6. Một guồng nước có dạng hình tròn bán kính 2,5 m , trục của nó đặt cách mặt nước 2m ( như hình vẽ bên). Khi guồng quay đều , khoảng cách h ( mét)từ một chiêc gầu gắn tại điểm A của guồng đến mặt nước được tính theo công thức , trong đó Với x là thời gain quay của guồng , tính bằng phút ; ta quy ước rằng khi gầu ở bên trên mặt nước và khi gầu ở dưới mặt nước . a)Khi nào thì chiếc gầu ở vị trí thấp nhất. b)Khi nào thì chiếc gầu ở vị trí cao nhất
Ngày soạn: 11/9/2018 Chủ đề: PHƯƠNG TRÌNH LƯỢNG GIÁC I. Mục tiêu 1. Về Kiến thức: - Biết phương trình lượng giác cơ bản và công thức nghiệm. - Nắm được điều kiện của a để các phương trình có nghiệm. - Biết cách sử dụng các kí hiệu arcsin a, arccos a, arctan a, arccot a. 2. Về Kỹ năng: - Giải thành thạo phương trình lượng giác cơ bản - Biết sử dụng máy tính bỏ túi để tìm nghiệm gần đúng của phương trình lượng giác cơ bản. 3. Tư duy, thái độ: - Biết nhận dạng các bài tập về dạng quen thuộc. - Cẩn thận, chính xác trong tính toán, lập luận. 4. Định hướng phát triển các năng lực: - Năng lực phát hiện và giải quyết vấn đề, năng lực tính toán, năng lực tư duy, năng lực giao tiếp, năng lực hợp tác. II. Chuẩn bị của GV và HS 1. Giáo viên: Kế hoạch dạy học, nội dung giao cho HS hoạt động nhóm. 2. Học sinh: Hoàn thiện nội dung bài tập được giao về nhà. III. Chuỗi các hoạt động học 1. GIỚI THIỆU (HOẠT ĐỘNG TIẾP CẬN BÀI HỌC) (thời gian) 1.1. Chuyển giao nhiệm vụ: HS đọc nội dung bài toán ( phiếu học tập 1), nhìn hình vẽ, tập trung thảo luận theo nhóm và lần lượt trả lời các câu hỏi của GV. Bài toán: Một vệ tinh nhân tạo bay quanh trái đất theo một quĩ đạo hình elip. Chiều cao h ( tính theo đơn vị kilomet) của vệ tinh so với bề mặt trái đất xác định bởi công thức: trong đó t là thời gian tính bằng phút kể từ vệ tinh bay vào quỹ đạo. Người ta cần thực hiện một thí nghiệm khoa học khi vệ tinh cách mặt đất . Hãy tìm các thời điểm để có thể thực hiện thí nghiệm đó. 1.2. Thực hiện nhiệm vụ học tập Yêu cầu HS suy nghĩ, trao đổi tích cực, lĩnh hội thảo luận từ các bạn trong nhóm. GV gợi ý bằng cách đưa ra các các câu hỏi: Câu hỏi 1: Nêu yêu cầu của bài toán này?
Câu hỏi 2: Nếu đặt thì hãy viết lại PT theo x? 1.3 Báo cáo kết quả hoạt động và thảo luận: Chọn các đại diện nhóm ( HS Giỏi ) lần lượt nêu câu trả lời của các câu hỏi. T L C H 1: - Khuyến khích HS xung phong trả lời, dần hướng HS nêu được: “ tìm t để thỏa PT: + TL C H 2: cosx = 1.4: Đánh giá kết quả thực hiện nhiệm vụ học tập: GV nhận xét, đánh giá phần trả lời của HS. GV nhấn mạnh kết quả: “ tìm x để cosx = ” Trong thực tế có nhiều bài toán dẫn đến việc giải các phương trình có dạng: với là ẩn, là tham số. Các phương trình trên gọi là phương trình lượng giác cơ bản. 2. NỘI DUNG BÀI HỌC (HOẠT ĐỘNG HÌNH THÀNH KIẾN THỨC) 2.1. Phương trình . +) HĐ1: Tiếp cận kiến thức: GỢI Ý HĐ1.1 Phát phiếu học tập và HS thảo luận theo nhóm H1. Có giá trị nào của x thỏa: sinx = -2 ? H2. Có giá trị nào của x thỏa: sinx = ? Tìm các giá trị của sao cho ? Nhận xét mối liên hệ giữa các giá trị x đó.
HSTL: Không có giá trị nào của vì . HSTL: Có giá trị của vì HSTL: , , … +) HĐ2: Hình thành kiến thức: Phương trình (1) + : phương trình vô nghiệm. + : Gọi , phương trìnhcó nghiệm là: ● Chú ý. + + , phương trình (1) có nghiệm:
* * * VD1. Trong các phương trình sau, có bao nhiêu phương trình có nghiệm? 1. ; 2.; 3. ; 4.. A. 1. B. 2. C. 3. D. 0. VD 2. Các họ nghiệm của phương trình sinx = là: A. B. C. D. +) HĐ3: Củng cố. GỢI Ý VD2. Giải các phương trình sau: ( HS hoạt động nhóm) a) b) c) d)
b) c) d) ) sin3x = - II. Phương trình +) HĐ1: Tiếp cận kiến thức: GỢI Ý - Phát phiếu học tập. H1. Có bao nhiêu giá trị của thỏa mãn ? H2. Có giá trị nào của thỏa mãn ? H3. Tìm các giá trị của sao cho ? HSTL: Không có giá trị nào của vì . HSTL: Có giá trị của vì HSTL: , , … +) HĐ2: Hình thành kiến thức: 2.2. Phương trình (2) + : phương trình vô nghiệm. + : Gọi , phương trìnhcó nghiệm là: . Chú ý. + + + , phương trình (2) có nghiệm:
+ + + VD1. Trong các phương trình sau, có bao nhiêu phương trình có nghiệm? 1. ; 2.; 3. ; 4.. A. 1. B. 2. C. 3. D. 0. VD 2. Tìm các họ nghiệm của phương trình cosx = . A. B. C. D. +) HĐ3: Củng cố. GỢI Ý VD2. Giải các phương trình sau: ( HS hoạt động nhóm) a) . b) c)
b) c) Về nhà - Làm bài 3 (SGK: 28) - Tìm hiểu công thức nghiệm phương trình . 2.3. Phương trình : +) HĐ1: Tiếp cận kiến thức: GỢI Ý HĐ1.1. Viết điều kiện của phương trình ? Do tanx = a ⇔ nên điều kiện của phương trình là cosx ≠ 0 ⇔ x ≠ HĐ1.2. Dựa vào đồ thị hàm số có nhận xét gì về mối quan hệ của các hoành độ giao điểm của 2 đồ thị đó ? - Các hoành độ giao điểm của hai đồ thị sai khác nhau một bội số của - Hoành độ của mỗi giao điểm là một nghiệm của phương trình Khi đó, nghiệm của phương trình là:
+) HĐ2: Hình thành kiến thức. Từ kết quả của HĐ1.1; HĐ1.2 ta có: - Điều kiện của phương trình là: x ≠ - Gọi x1 là hoành độ giao điểm()thỏa mãn điều kiện Kí hiệu . Khi đó, nghiệm của phương trình là:
* Chú ý: a) Phương trình Tổng quát: b) Phương trình c) Các trường hợp đặc biệt: Ví dụ: Họ nghiệm nào dưới đây là họ nghiệm của phương trình A. B. C. D. +) HĐ3: Củng cố. GỢI Ý HĐ3.1. Giải các phương trình sau: a) b) c) a) Sử dụng chú ý a) b) c) Sử dụng chú ý b) HĐ3.2. Giải phương trình sau: a) Sử dụng ý 3 chú ý c) b) 2.4. Phương trình : +) HĐ1: Tiếp cận kiến thức: GỢI Ý HĐ1.1. Viết điều kiện của phương trình ? Do cotx = a ⇔ nên điều kiện của phương trình là sinx ≠ 0 ⇔ x ≠ HĐ1.2. Dựa vào đồ thị hàm số có nhận xét gì về mối quan hệ của các hoành độ giao điểm của 2 đồ thị đó ? - Các hoành độ giao điểm của hai đồ thị sai khác nhau một bội số của - Hoành độ của mỗi giao điểm là một nghiệm của phương trình Khi đó, nghiệm của phương trình là:
+) HĐ2: Hình thành kiến thức. Từ kết quả của HĐ1.1;HĐ1.2 ta có: - Điều kiện của phương trình là: x ≠ - Gọi x1 là hoành độ giao điểm()thỏa mãn điều kiện Kí hiệu . Khi đó, nghiệm của phương trình là:
* Chú ý: a) Phương trình Tổng quát: b) Phương trình c) Các trường hợp đặc biệt: Ví dụ: Họ nghiệm nào dưới đây là họ nghiệm của phương trình A. B. C. D. +) HĐ3: Củng cố. GỢI Ý HĐ3.1. Giải các phương trình sau: a) b) c) a) Sử dụng chú ý a) b) c) Sử dụng chú ý b) HĐ3.2. Giải phương trình sau: a) Sử dụng ý 3 chú ý c) b) 3.LUYỆN TẬP: HĐTP 1. Giải bài tập tự luận . - Chuyển giao nhiệm vụ. Bài tập 1: Giải các phương trình sau: a. c. b. d. - Học sinh thực hiện nhiệm vụ. - Học sinh lên bảng trình bày. - Giáo viên nhận xét chỉnh sửa. HĐTP 2. Giải bài tập trắc nghiệm. - Chuyển giao nhiệm vụ: Nhóm 1:câu 1,5,9. Nhóm 2:câu 2,6,8. Nhóm 3: câu 3,7,10. Nhóm 4: câu 4,8,10 Phát phiếu học tâp. Câu 1: Trong các phương trình sau, phương trình nào vô nghiệm ? Đáp án A. . B. C. D. Lời giải chi tiết
Câu 2: Nghiệm đặc biệt nào sau đây là sai ? các phương án Đáp án A. B. C. D. Lời giải chi tiết
Câu 3: Phương trình có nghiệm là: các phương án Đáp án A. vô nghiệm . B. , . C. , . D. , . Lời giải chi tiết
Câu 4: Chọn đáp án đúng trong các câu sau: các phương án Đáp án A. B. . C. . D. . Lời giải chi tiết
Câu 5: Phương trình có nghiệm khi m là: các phương án Đáp án A. B. C. D. Lời giải chi tiết
Câu 6: Nghiệm của phương trình là: các phương án Đáp án A. B. C. D. Lời giải chi tiết
Câu 7. Cho biết là họ nghiệm của phương trình nào sau đây ? các phương án Đáp án A. . B. . C. . D. . Lời giải chi tiết
Câu 8: Nghiệm của phương trình là: các phương án Đáp án A. . B. . C. . D. . Lời giải chi tiết
Câu 9: Số nghiệm của phương trình trong khoảng là: các phương án Đáp án A. 0 B. 1. C. 2. D. 3. Lời giải chi tiết
Câu 10: Phương trình có nghiệm là: các phương án Đáp án A. . B. . C. D. . Lời giải chi tiết
- Học sinh thực hiện nhiệm vụ: Thảo luận và hoàn thành phiếu học tập - Báo cáo kết quả: Đại diện các nhóm trình bày kết quả. - Nhận xét đánh giá: Giáo viên nhấn mạnh các dạng toán thường gặp trong bài này, đồng thời chú ý cách giải nhanh bằng phương pháp trắc nghiệm 4. VẬN DỤNG VÀ MỞ RỘNG 4.1 BÀI TOÁN THỰC TẾ. - Chuyển giao nhiệm vụ Bài toán: Một vệ tinh nhân tạo bay quanh trái đất theo một quĩ đạo hình elip. Chiều cao h ( tính theo đơn vị kilomet) của vệ tinh so với bề mặt trái đất xác định bởi công thức: trong đó t là thời gian tính bằng phút kể từ vệ tinh bay vào quỹ đạo. Người ta cần thực hiện một thí nghiệm khoa học khi vệ tinh cách mặt đất . Hãy tìm các thời điểm để có thể thực hiện thí nghiệm đó. - Học sinh thực hiện nhiệm vụ. - Học sinh báo cáo kết quả. - Giáo viên nhận xét, chỉnh sửa. “ tìm t để thỏa PT:
với thì 4.2. BÀI TOÁN MỞ RỘNG. - Chuyển giao nhiệm vụ. Câu 1. Với những giá trị nào của thì giá trị của các hàm số và bằng nhau? A. B. C. D. Câu 2. Tổng các nghiệm của phương trình trên nửa khoảng bằng: A. . B. . C. . D. . - Học sinh thực hiện nhiệm vụ. - Học sinh báo cáo kết quả. - Giáo viên nhận xét, chỉnh sửa. Câu 1: Xét phương trình hoành độ giao điểm: Chọn B. Câu 2: Ta có Vì , suy ra . Suy ra các nghiệm của phương trình trên là Suy ra Chọn B.
Ngày soạn: 23/9/2018 Chủ đề 3: MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP I.Mục tiêu: 1/ Kiến thức: - Biết được dạng PT và cách giải PT bậc nhất đối với một hàm số lượng giác, PT qui về PT bậc nhất đối với một hàm số lượng giác. - Biết được dạng PT và cách giải PT bậc hai đối với một hàm số lượng giác, PT qui về PT bậc hai đối với một hàm số lượng giác. -Biết được dạng PT và cách giải PT bậc nhất đối với sinx và cosx, PT thuần nhất bậc hai đối với sinx và cosx. 2/ Kĩ năng: - Giải được PT bậc nhất đối với một hàm số lượng giác , PT bậc hai đối với một hàm số lượng giác, PT bậc nhất đối với sinx và cosx, , PT thuần nhất bậc hai đối với sinx và cosx. - Giải được một số dạng phương trình lượng giác khác - Có kĩ năng chọn nghiệm trong khoảng để làm bài trắc nghiệm - Tìm điều kiện để phương trình có nghiệm. 3/ Thái độ : - Nghiêm túc, tích cực, chủ động, độc lập và hợp tác trong hoạt động nhóm - Có hứng thú trong học tập và tìm tòi nghiên cứu liên hệ thực tiễn . 4/ Đinh hướng phát triển năng lực: - Năng lực hợp tác: Tổ chức nhóm học sinh hợp tác thực hiện các hoạt động. - Năng lực tự học, tự nghiên cứu: Học sinh tự giác tìm tòi, lĩnh hội kiến thức và phương pháp giải quyết bài tập và các tình huống. - Năng lực phát hiện và giải quyết vấn đề: Học sinh biết cách huy động các kiến thức đã học để giải quyết các câu hỏi. Biết cách giải quyết các tình huống trong giờ học. - Năng lực tính toán. -Năng lực quan sát - Năng lực vận dụng kiến thức vào cuộc sống. II.CHUẨN BỊ: 1. Giáo viên: + Soạn bài và xem lại giáo án trước giờ lên lớp. + Chuẩn bị phương tiện dạy học: Phấn, thước kẻ, máy chiếu... 2. Học sinh: + Đọc bài trước ở nhà. +Làm việc nhóm ở nhà, trả lời các câu hỏi được giáo viên giao từ tiết trước III. Chuỗi các hoạt động học Kiểm tra bài cũ: 1)Giải các phương trình: a) b) ( b) TIẾT1 PHƯƠNG TRÌNH BẬC NHẤT ĐỐI VỚI MỘT HSLG -. Mục tiêu: Nắm được dạng PT và cách giải PT bậc nhất, PT qui về PT bậc nhất - Nội dung: Đưa ra phần lý thuyết và bài tập ở mức độ NB, TH - Phương thức tổ chức : Thuyết trình, tổ chức hoạt động nhóm - Sản phẩm: HS nắm được cách giải PT bậc nhất, và PT đưa về PT bậc nhất I. HĐKT 1: Khởi động - Mục tiêu: Nhận biết dạng PT bậc nhất. - Nội dung, phương thức tổ chức: + Chuyển giao:: Học sinh giải quyết câu hỏi sau. + Thực hiện: Học sinh suy nghĩ và trả lời câu hỏi. + Báo cáo, thảo luận: Chỉ định một học sinh bất kì trả lời câu hỏi, các học sinh khác đánh giá lời giải. + Đánh giá, nhận xét, tổng hợp chốt kiến thức: Trên cơ sở câu trả lời của học sinh, giáo viên chuẩn hóa lời giải, từ đó GV định nghĩa. HS viết bài vào vở.. Câu hỏi Gợi ý H1: Nêu định nghĩa PT bậc nhất đối với x ? Đ 1; Dạng ax+b=0 H2: Hãy phát biểu PT bậc nhất đối với 1 HSLG? Đ 2: HS phát biểu định nghĩa H3: Cho các VD về PT bậc nhất đối với 1 hàm số LG? Đ 3: . 2sinx – = 0; 2sinx – 3 = 0; tanx + 1 = 0 II. HĐKT 2: Hình thành kiến thức - Mục tiêu: Nhận biết dạng PT bậc nhất., cách giải PT bậc nhất , - Nội dung, phương thức tổ chức: + Chuyển giao:: Học sinh giải quyết câu hỏi sau. + Thực hiện: Học sinh suy nghĩ và trả lời câu hỏi.và ghi bài + Báo cáo, thảo luận: Chỉ định một học sinh bất kì trả lời câu hỏi, các học sinh khác đánh giá lời giải. + Đánh giá, nhận xét, tổng hợp chốt kiến thức: Trên cơ sở câu trả lời của học sinh, giáo viên chuẩn hóa lời giải, từ đó GV định nghĩa. HS viết bài vào vở.. Ta có định nghĩa sau: 1. Định nghĩa: PT bậc nhất đối với 1 HSLG là PT có dạng at + b = 0 Trong đó a, b là các hệ số (a ≠ 0), t là 1 trong các HSLG 2.Cách giải phương trình bậc nhất đối với 1 HSLG: Đưa về PTLG cơ bản III) HĐ 3: Củng cố - Mục tiêu: HS áp dụng công thức nghiệm vào GPT và PT qui về PT bậc nhất - Nội dung, phương thức tổ chức: + Chuyển giao: L: Học sinh thảo luận theo nhóm giải quyết câu hỏi sau + Thực hiện: HS trao đổi theo nhóm lời giải + Báo cáo, thảo luận: Gọi mỗi nhóm 1 hs lên trình bày LG 1 ý + Đánh giá, nhận xét, tổng hợp chốt kiến thức: GV chuẩn hóa LG VD1:Giải các phương trình sau Gợi ý a) . 2sinx – = 0; a) b)2sinx – 3 = 0 b)pt ⇔ sinx = > 1: PT VN c)tanx + 1 = 0 c)Pt ⇔ tanx = –⇔ x = – d)2cosx – = 0 d) 3. Cách giải PT đưa về PT bậc nhất Ví dụ 2 Gợi ý H1: Khai triển sin2x? Đ1 sin2x = 2sinx.cosx H2:Nêu cách giải phương trình tích? Đ2 A.B = 0 ⇔ VD: GPT sau a) (sinx + 1)(2cos2x – ) = 0 b) 5cosx – 2sin2x = 0 c) 8sinx.cosx.cos2x = –1 d) sin2x – sinx = 0 VD3: Giải phương trình sau: Gợi ý a) 2sin2x + a) PT⇔ 2sin2x(1 + cos2x) =0 b)2cos2x – 1 = 0 b) PT⇔ cos2x = 0 c)sinx + sin2x + sin3x = 0 c) PT⇔ sin2x(2cosx + 1) = 0 d) sinx + cosx = 1 d) TIẾT 2 PHƯƠNG TRÌNH BẬC HAI ĐỐI VỚI MỘT HÀM SỐ LƯỢNG GIÁC 1) Hoạt động khởi động. a. Mục tiêu: -Nắm được cách giải phương trình bậc hai và công thức nghiệm b) Nội dung và phương thức tổ chức. - Chuyển giao: Các nhóm (4 nhóm) nêu cách giả và lấy ví dụ minh họa. - Thực hiện: 4 nhóm thực hiện. - Báo cáo, thảo luận: Các nhóm báo cáo kết quả. - Đánh giá: Giáo viên đánh giá các nhóm. c) Sản phẩm Kết luận: Phương trình bấc hai là phương trình có dạng Ta có: +Phương trình vô nghệm + Phương trình có nghiệm kép +Phương trình có hai nghiệm phân biệt 2) Hoạt động hình thành kiến thức. PT bậc hai đối với một HSLG (45 phút) HĐ1: Tiếp cận kiến thức: + Chuyển giao:: Học sinh trả lời các câu hỏi sau. + Thực hiện: Học sinh suy nghĩ và trả lời câu hỏi. + Báo cáo, thảo luận: Chỉ định một học sinh bất kì trả lời câu hỏi, các học sinh khác đánh giá lời giải. + Đánh giá, nhận xét, tổng hợp chốt kiến thức: Trên cơ sở câu trả lời của học sinh, giáo viên phân tích, đánh giá, chính xác hóa lời giải, từ đó GV định nghĩa. HS viết bài vào vở.. Gợi ý 1)Nêu định nghĩa PT bậc hai đối với x ? 2) HS lấy VD về PT bậc hai đối với một HSLG sau đó cho biết dạng của PT bậc hai đối với một HSLG 3) Nêu cách giải của PT bậc hai đối với một HSLG 4)Để giải được phương trình đưa về phương trình bậc hai đối với một hàm số lượng giác các em hãy nhắc lại - Hằng đẳng thức lượng giác cơ bản. - Công thức cộng. - Công thức nhân đôi. - Công thức biến đổi tích thành tổng, tổng thành tích. . 1) 2) 3) Đặt biểu thức lượng giác làm ẩn phụ và đặt điều kiện cho ẩn phụ (nếu có) rồi giải phương trình theo ẩn phụ này. Cuối cùng ta đưa về việc giải các phương trình lượng giác cơ bản. HĐ2: Hình thành kiến thức: Gợi ý a. Định nghĩa: phương trình bậc hai đối với một hàm số lượng giác là phương trình có dạng (và t là một trong các hàm số lượng giác. b. . Cách giải : Đặt biểu thức lượng giác làm ẩn phụ và đặt điều kiện cho ẩn phụ (nếu có) rồi giải phương trình theo ẩn phụ này. Cuối cùng ta đưa về việc giải các phương trình lượng giác cơ bản. * asin2x + bsinx + c = 0 Đặt t = sinx Đk: * acos2x + bcosx + c = 0 Đặt t = cosx Đk: * atan2x + btanx + c = 0 Đặt t = tanx * acot2x + bcotx + c = 0 Đặt t = cotx
HĐ3: Củng cố kiến thức: + Chuyển giao: Học sinh thảo luận theo nhóm giải quyết các BT dưới đây. + Thực hiện: HS trao đổi theo nhóm để tìm ra lời giải + Báo cáo, thảo luận: Gọi mỗi nhóm một học sinh lên trình bày lời giải. + Đánh giá, nhận xét, tổng hợp chốt kiến thức, GV chuẩn hóa lời giải Gợi ý a) b) c) d) Chú ý: Phương trình: . (, ) Chia cả hai vế cho ( với điều kiện ) để đưa về phương trình bậc hai đối với tanx. Khi đó ta được phương trình sau: Giải phương trình bậc hai đối với tanx ta tìm được nghiệm của phương trình ban đầu. Nếu chia cả hai vế PT cho ta được phương trình bậc hai đối với cotx. TIẾT 3 Phương Trình bậc nhất đối với sinx và cosx. HĐ1: Tiếp cận kiến thức: + Chuyển giao: Học sinh trả lời các câu hỏi dưới đây. + Thực hiện: Học sinh suy nghĩ và trả lời câu hỏi. + Báo cáo, thảo luận: Chỉ định một học sinh bất kì trả lời câu hỏi, các học sinh khác đánh giá lời giải. + Đánh giá, nhận xét, tổng hợp chốt kiến thức: Trên cơ sở câu trả lời của học sinh, giáo viên chính xác hóa lời giải. Gợi ý 1) HS nhắc lại công thức cộng 2) Với kết quả . CM: 3): Chứng minh rằng: 4)Tính: 5) Với , hãy thu gọn biểu thức A? + Vì nên ta viết được biểu thức dưới dạng trên. +, I=1 + Ta có HĐ2: Hình thành kiến thức: Gợi ý a) Biến đổi biểu thức: , (*) Với b) Phương trình dạng . PT
(Chia hai vế pt cho ) PT có nghiệm khi
HĐ3: Củng cố kiến thức: + Chuyển giao:Phát phiếu học tập + Thực hiện: HS độc lập làm BT + Báo cáo, thảo luận: Gọi 1 hs lên trình bày LG , Gọi HS khác nhận xét + Đánh giá, nhận xét: phân tích, đánh giá ,chính xác hóa lời giải. Gợi ý 1) Giải các phương trình sau: a) b) 2) Với giá trị nào của m thì phương trình có nghiệm 1b) giải tương tự 2)Phương trình có nghiệm khi
Tiết 4 LUYỆN TẬP PHƯƠNG TRÌNH LƯỢNG GIÁC( có sử dụng máy tính) I. HOẠT ĐỘNG KHỞI ĐỘNG - Mục tiêu: Củng cố lại cách giải phương trình bậc nhất đối với một hàm số lượng giác. - Nội dung, phương thức tổ chức: Giáo viên trình chiếu câu hỏi gọi học sinh trả lời +/ Chuyển giao: CH1. Phương trình có nghiệm khi và chỉ khi A. B. C. D. CH2. Khẳng định nào sau đây là sai. A. B. C. D. +/ Thực hiện nhiệm vụ : Học sinh làm việc +/ Báo cáo, thảo luận: Chỉ định một học sinh bất kì trình bày lời giải, các học sinh khác thảo luận để hoàn thiện lời giải. +/ Đánh giá, nhận xét: Trên cơ sở câu trả lời của học sinh, giáo viên chuẩn hóa lời giải. - Giáo viên chốt lại kiến thức. II. HOẠT ĐỘNG LUYỆN TẬP Hoạt động II.1 - Mục đích: Vận dụng để giải các phương trình lượng giác ở mức độ nhận biết, thông hiểu, vận dụng. - Nội dung, phương thức tổ chức +/ Chuyển giao: GV trình chiếu đề bài bài 1 và bài 2. Bài 1. Giải các phương trình sau: a) b) c) d) Bài 2. Giải các phương trình sau: a) b) c) d) +/ Thực hiện nhiệm vụ: Học sinh độc lập làm việc +/ Báo cáo, thảo luận: Gọi học sinh lên chữa bài tập, các học sinh khác thảo luận để hoàn thiện lời giải. +/ Đánh giá, nhận xét: Trên cơ sở lời giải của học sinh, giáo viên chuẩn hóa lời giải - Sản phẩm: Lời giải cho 2 bài tập. Hoạt động II.2 - Mục đích: Rèn luyện cho HS cách làm bài tập trắc nghiệm. - Nội dung, phương thức tổ chức: +/ Chuyển giao: GV phát phiếu học tập gồm các câu hỏi trắc nghiệm khách quan đủ các mức độ cho HS. Phiếu học tập Câu 1: Cho phương trình: , nghiệm của phương trình là: A. B. C. D. Câu 2: Cho phương trình: , nghiệm của phương trình là: A. B. C. D. Câu 3: Cho phương trình: , nghiệm của phương trình là: A. B. C. D. Câu 4: Cho phương trình: , số nghiệm của phương trình thuộc khoảng là: A. 1 B. 2 C. 3 D. 4 Câu 5: Với giá trị nào của m thì phương trình có nghiệm là: A. B. C. D. Câu 6: Nghiệm của phương trình: là: A. B. C. D. Câu 7. Phương trình có nghiệm là: a. b. c. d. Câu 8. Tìm nghiệm x của phương trình sin2x + sin4x = sin6x A. 300, 600 B. 400, 600 C. 450, 750, 1350 D. 600, 900 , 1200 Câu 9. Tổng các nghiệm của phương trình trên đoạn bằng A. B. C. D. Câu 10. Với giá trị nào của m thì phương trình có nghiệm là: A. B. C. D. +/ Thực hiện nhiệm vụ: Học sinh độc lập làm việc. +/ Báo cáo, thảo luận: Gọi học sinh đưa ra đáp án cho các câu hỏi trắc nghiệm, các học sinh khác thảo luận để hoàn thiện lời giải. +/ Đánh giá, nhận xét: Trên cơ sở lời giải của học sinh, giáo viên chuẩn hóa lời giải. -Sản phẩm: Đáp án cho phần trắc nghiệm. - Giáo viên hướng dẫn học sinh sử dụng máy tính bỏ túi giải một số câu trắc nghiệm Tiết 5 LUYỆN TẬP PHƯƠNG TRÌNH LƯỢNG GIÁC ( có sử dụng máy tính) I. HOẠT ĐỘNG KHỞI ĐỘNG - Mục tiêu: Củng cố lại cách giải phương trình bậc hai đối với một hàm số lượng giác. - Nội dung, phương thức tổ chức: Giáo viên trình chiếu câu hỏi gọi học sinh trả lời +/ Chuyển giao: CH1. Cho phương trình . Đặt . Khi đó điều kiện của t là A. B. C. D. +/ Thực hiện nhiệm vụ: Học sinh làm việc +/ Báo cáo, thảo luận: Chỉ định một học sinh bất kì trình bày lời giải, các học sinh khác thảo luận để hoàn thiện lời giải. +/ Đánh giá, nhận xét: Trên cơ sở câu trả lời của học sinh, giáo viên chuẩn hóa lời giải. - Giáo viên chốt lại kiến thức. II. HOẠT ĐỘNG LUYỆN TẬP Hoạt động II.1 - Mục đích: Vận dụng để giải các phương trình lượng giác ở mức độ nhận biết, thông hiểu, vận dụng. - Nội dung, phương thức tổ chức +/ Chuyển giao: GV trình chiếu đề bài bài 1 Bài 1. Giải các phương trình sau: a) b) c) d) +/ Thực hiện nhiệm vụ: Học sinh độc lập làm việc +/ Báo cáo, thảo luận: Gọi học sinh lên chữa bài tập, các học sinh khác thảo luận để hoàn thiện lời giải. +/ Đánh giá, nhận xét: Trên cơ sở lời giải của học sinh, giáo viên chuẩn hóa lời giải - Sản phẩm: Lời giải cho bài tập 1. Hoạt động II.2 - Mục đích: Rèn luyện cho HS cách làm bài tập trắc nghiệm. - Nội dung, phương thức tổ chức: +/ Chuyển giao: GV phát phiếu học tập gồm các câu hỏi trắc nghiệm khách quan đủ các mức độ cho HS. Phiếu học tập Câu 1. Phương trình lượng giác: có nghiệm là: A. B. C. D. Vô nghiệm Câu 2. Phương trình lượng giác: có nghiệm là: A. B. C. D. Vô nghiệm Câu 3. Phương trình : có nghiệm là : A. B. C. D. Câu 4. Nghiệm dương bé nhất của phương trình: là: A. B. C. D. Câu 5. Nghiệm của phương trình lượng giác : thõa điều kiện là : A. B. C. D. Câu 6. Phương trình có các nghiệm là: A. B. C. D. Câu 7. Cho phương trình: , nghiệm của pt là: A. B. C. D. Câu 8. Số vị trí biểu diễn các nghiệm của phương trình (m là tham số thực) trên đường tròn lượng giác là 1 khi và chỉ khi: A. B. C. D. hoặc Câu 9. phương trình có nghiệm là A. B. C. D. Câu 10. Phương trình (m là tham số thực) có nghiệm thuộc đoạn khi và chỉ khi: A. B. C. D. +/ Thực hiện nhiệm vụ: Học sinh độc lập làm việc. +/ Báo cáo, thảo luận: Gọi học sinh đưa ra đáp án cho các câu hỏi trắc nghiệm, các học sinh khác thảo luận để hoàn thiện lời giải. +/ Đánh giá, nhận xét: Trên cơ sở lời giải của học sinh, giáo viên chuẩn hóa lời giải. - Sản phẩm: Đáp án cho phần trắc nghiệm. - Giáo viên hướng dẫn học sinh sử dụng máy tính bỏ túi giải một số câu trắc nghiệm Tiết 6 LUYỆN TẬP PHƯƠNG TRÌNH LƯỢNG GIÁC ( có sử dụng máy tính) Hoạt động I.1. Kiểm tra bài cũ -Mục tiêu : Củng cố lại cách giải phương trình với . -Nội dung , phương thức tổ chức : Giáo viên trình chiếu câu hỏi gọi học sinh trả lời +/Chuyển giao : CH1: Cho biểu thức ( với ) và . Biểu thức bằng biểu thức nào sau đây? A. B. C. D. CH2: Điều kiện phương trình (với ) có nghiệm là : A. B. D.. D. HS: Nhận nhiệm vụ mà GV giao cho +/ Thực hiện nhiệm vụ : Học sinh làm việc +/ Báo cáo, thảo luận: Chỉ định một học sinh bất kì trình bày lời giải, các học sinh khác thảo luận để hoàn thiện lời giải. + /Đánh giá, nhận xét: Trên cơ sở câu trả lời của học sinh, giáo viên chuẩn hóa lời giải - Giáo viên chốt lại kiến thức II. HOẠT ĐỘNG LUYỆN TẬP Hoạt động II.1 - Mục đích: Vận dụng để giải các phương trình lượng giác ở mức độ nhận biết, thông hiểu, vận dụng. - Nội dung, phương thức tổ chức +/ Chuyển giao: GV ghi đề bài bài 1 Bài 1. Giải các phương trình sau: 1) 2) 3. 4. +/ Thực hiện nhiệm vụ: Học sinh độc lập làm việc +/ Báo cáo, thảo luận: Gọi học sinh lên chữa bài tập, các học sinh khác thảo luận để hoàn thiện lời giải. +/ Đánh giá, nhận xét: Trên cơ sở lời giải của học sinh, giáo viên chuẩn hóa lời giải - Sản phẩm: Lời giải cho bài tập 1. Hoạt động II.2 - Mục đích: Rèn luyện cho HS cách làm bài tập trắc nghiệm. - Nội dung, phương thức tổ chức: +/ Chuyển giao: GV phát phiếu học tập gồm các câu hỏi trắc nghiệm khách quan đủ các mức độ cho HS. Phiếu học tập Câu 1: Giải phương trình A. B. C. D. Câu 2: Phương trình (với ) có nghiệm là: A. B. C. D. Câu 3: Nghiêm của pt sinx + .cosx = 0 la: A. B. C. D. Câu 4: Phương trình : tương đương với phương trình nào sau đây : A. B. C. D. Câu 5: Xét các phương trình lượng giác: (I ) sinx + cosx = 3 , (II ) 2.sinx + 3.cosx = , (III ) cos2x + cos22x = 2 Trong các phương trình trên , phương trình nào vô nghiệm? A. Chỉ (III ) B. Chỉ (I ) C. (I ) và (III ) D. Chỉ (II ) Câu 6: Phương trình (với ) có nghiệm là: A. B. C. D. Câu 7: Điều kiện để phương trình vô nghiệm là A. B. C. D. Câu 8: Điều kiện để phương trình có nghiệm là : A. B. C. D.
A. 0 < m < B. C. D. m < 0 ;
A. B. C. D.
A). B). C). D).
A. B. C. D. +/ Thực hiện nhiệm vụ: Học sinh độc lập làm việc. +/ Báo cáo, thảo luận: Gọi học sinh đưa ra đáp án cho các câu hỏi trắc nghiệm, các học sinh khác thảo luận để hoàn thiện lời giải. +/ Đánh giá, nhận xét: Trên cơ sở lời giải của học sinh, giáo viên chuẩn hóa lời giải. - Sản phẩm: Đáp án cho phần trắc nghiệm. - Giáo viên hướng dẫn học sinh sử dụng máy tính bỏ túi giải một số câu trắc nghiệm Ngày soạn: 7/10/2018 ÔN TẬP CHUYÊN ĐỀ 1 I.Mục tiêu: 1/ Kiến thức: + Hệ thống các kiến thức về HSLG + Giải các phương trình lượng giác 2/ Kĩ năng: - Giải được PT lượng giác cơ bản ,các bài tập liên quan đến hàm số lượng giác. - Giải được một số dạng phương trình lượng giác khác - Có kĩ năng chọn nghiệm trong khoảng để làm bài trắc nghiệm - Tìm điều kiện để phương trình có nghiệm. 3/ Thái độ : - Nghiêm túc, tích cực, chủ động, độc lập và hợp tác trong hoạt động nhóm - Có hứng thú trong học tập và tìm tòi nghiên cứu liên hệ thực tiễn . 4/ Đinh hướng phát triển năng lực: - Năng lực hợp tác: Tổ chức nhóm học sinh hợp tác thực hiện các hoạt động. - Năng lực tự học, tự nghiên cứu: Học sinh tự giác tìm tòi, lĩnh hội kiến thức và phương pháp giải quyết bài tập và các tình huống. - Năng lực phát hiện và giải quyết vấn đề: Học sinh biết cách huy động các kiến thức đã học để giải quyết các câu hỏi. Biết cách giải quyết các tình huống trong giờ học. - Năng lực tính toán. -Năng lực quan sát - Năng lực vận dụng kiến thức vào cuộc sống. II.CHUẨN BỊ: 1. Giáo viên: + Soạn bài và xem lại giáo án trước giờ lên lớp. + Chuẩn bị phương tiện dạy học: Phấn, thước kẻ, máy chiếu... 2. Học sinh: + Đọc bài trước ở nhà. +Làm việc nhóm ở nhà, trả lời các câu hỏi được giáo viên giao từ tiết trước II. HOẠT ĐỘNG LUYỆN TẬP Hoạt động II.1 - Mục đích: Vận dụng để giải các bài tập HSLG ở mức độ nhận biết, thông hiểu, vận dụng. - Nội dung, phương thức tổ chức +/ Chuyển giao: GV ghi đề bài bài 1 Câu 1. Tìm tập xác định của hàm số 1) 2) 3) 4) Câu 2: Cho hàm số: . Tìm GTLN, GTNN của hàm số +/ Thực hiện nhiệm vụ: Học sinh HĐ nhóm +/ Báo cáo, thảo luận: Gọi học sinh lên chữa bài tập, các học sinh khác thảo luận để hoàn thiện lời giải. +/ Đánh giá, nhận xét: Trên cơ sở lời giải của học sinh, giáo viên chuẩn hóa lời giải - Sản phẩm: Lời giải cho bài tập 1. Hoạt động II.2 TRẮC NGHIỆM Câu 1: Tập xác định của hàm số là A. B. C. D. Câu 2: Tập xác định của hàm số là A. B. C. D. Câu 3: Tập xác định của hàm số là A. B. C. D. Câu 4: Điều kiện xác định của hàm số là A. B. C. D. Câu 5: Cho hàm số: , GTLN của hàm số là: A. 2 B. 4 C. 6 D. 8 Câu 6: Hàm số nào sau đây là hàm số chẵn? A. B. C. D. Câu7: Hàm số có chu kỳ là: A. 3 B. C. 4 D. 2 Câu 8: Đồ thị hàm số đi qua điểm: A. P B. M() C. O(0;0) D. N Câu 9: Tập xác định của hàm số là: A. B. C. D . +/ Thực hiện nhiệm vụ: Học sinh độc lập làm việc. +/ Báo cáo, thảo luận: Gọi học sinh đưa ra đáp án cho các câu hỏi trắc nghiệm, các học sinh khác thảo luận để hoàn thiện lời giải. +/ Đánh giá, nhận xét: Trên cơ sở lời giải của học sinh, giáo viên chuẩn hóa lời giải. - Sản phẩm: Đáp án cho phần trắc nghiệm. - Giáo viên hướng dẫn học sinh sử dụng máy tính bỏ túi giải một số câu trắc nghiệm Hoạt động II.3 - Mục đích: Vận dụng để giải các PTLG ở mức độ nhận biết, thông hiểu, vận dụng. - Nội dung, phương thức tổ chức +/ Chuyển giao: GV ghi đề bài bài 1 Câu 1. Giải các phương trình sau:
Câu 2: Giải các phương trình sau: 1) 2) 3) 4) 5) +/ Thực hiện nhiệm vụ: Học sinh HĐ nhóm +/ Báo cáo, thảo luận: Gọi học sinh lên chữa bài tập, các học sinh khác thảo luận để hoàn thiện lời giải. +/ Đánh giá, nhận xét: Trên cơ sở lời giải của học sinh, giáo viên chuẩn hóa lời giải - Sản phẩm: Lời giải cho bài tập 1. Hoạt động II.4 TRẮC NGHIỆM Câu 1: Cho phương trình: , nghiệm của pt là: A. B. C. D. Câu 2: Cho phương trình: , nghiệm của pt là: A. B. C. D. Câu 3: Cho phương trình: , pt có 1 họ nghiệm là: A. B. C. D. Câu42: Cho phương trình: , số nghiệm của pt thuộc khoảng là: A. 1 B. 2 C. 3 D. 4 Câu 5: Cho phương trình: , nghiệm của pt là: A. B. C. D. Đáp số khác Câu 66: Cho phương trình: , nghiệm của pt là: A. B. C. D. Đáp số khác Câu 7: Giải phương trình A. B. C. D. Câu 8 phương trình có nghiệm là A. B. C. D. Câu 9: Cho phương trình: , nghiệm của pt là: A. B. C. D. Câu 10: Giải phương trình A. B. C. D. Câu 11: Giải phương trình A. B. C. D. Câu 12: Nghiệm của phương trình (với ) là A. B. C. D. Câu 13. Phương trình (m là tham số thực) có nghiệm thuộc đoạn khi và chỉ khi: A. B. C. D. +/ Thực hiện nhiệm vụ: Học sinh độc lập làm việc. +/ Báo cáo, thảo luận: Gọi học sinh đưa ra đáp án cho các câu hỏi trắc nghiệm, các học sinh khác thảo luận để hoàn thiện lời giải. +/ Đánh giá, nhận xét: Trên cơ sở lời giải của học sinh, giáo viên chuẩn hóa lời giải. - Sản phẩm: Đáp án cho phần trắc nghiệm. - Giáo viên hướng dẫn học sinh sử dụng máy tính bỏ túi giải một số câu trắc nghiệm BÀI TẬP VẬN DỤNG MỞ RỘNG Một vật nặng treo bởi một chiếc lò xo , chuyển động lên xuống qua vị trí cân bằng (như hình vẽ bên). Khoảng cách h từ vật đó đến vị trí cân bằng ở thời điểm t giây được tính theo công thức trong đó , với d được tính bằng cm , ta quy ước rằng khi vật ở phía trên vị trí cân bằng , khi vật ở phía dưới vị trí cân bằng .Hỏi: a)Ở vào thời điểm nào trong một 1 giây đầu tiên ,vật ở vị trí cân bằng ? b) Ở vào thời điểm nào trong một 1 giây đầu tiên ,vật ở xa vị trí cân bằng nhất? CHUYÊN ĐỀ 2 Ngày soạn: 14/10/2018 CHỦ ĐỀ: QUY TẮC ĐẾM I. MỤC TIÊU CỦA BÀI 1. Kiến thức: Học sinh cần nắm vững + Quy tắc cộng, quy tắc nhân. + Phân biệt được sự khác nhau của hai quy tắc đếm trên. 2. Kỷ năng: Biết sử dụng hai quy tắc trên một cách linh hoạt vào việc giải các bài toán đếm cơ bản. 3. Thái độ: Cẩn thận, chính xác. 4. Định hướng phát triển năng lực: Năng lực tự học, quan sát, phát hiện và giải quyết vấn đề, vận dụng kiến thức vào thực tiễn cuộc sống. II. CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH 1. Giáo viên: Đồ dùng giảng dạy, phấn màu và đồ dùng có liên quan đến bài học. 2. Học sinh: Đồ dùng học tập. III. CHUỖI CÁC HOẠT ĐỘNG 1. GIỚI THIỆU Bài toán 1. Mỗi tài khoản người dùng mạng xã hội Facebook có một mật khẩu. Giả sử mỗi mật khẩu gồm 6 kí tự, mỗi ký tự là một chữ số (trong 10 chữ số từ 0 đến 9) hoặc là một chữ cái (trong 26 chữ cái tiếng Anh) và mật khẩu phải có ít nhất một chữ số. Hỏi có thể lập được tất cả bao nhiêu mật khẩu? + Hãy viết một mật khẩu. + Có thể liệt kê được hết các mật khẩu không? + Hãy ước đoán thử xem có khoảng bao nhiêu mật khẩu? Bài toán 2. Trong một trân đấu bóng đá sau hai hiệp phụ hai đội vẫn hoà nên phải phải thực hiện đá luân lưu 11m (penalty) để phân thắng bại. Huấn luyện viên của mỗi đội được chọn ra 5 cầu thủ để thực hiện lần lượt 5 quả penalty. Hỏi mỗi huấn luyện viên có bao nhiêu cách phân công thực hiện loạt penalty trên? + Em hãy đóng vai HLV thử cho một cách phân công thực hiện đá loạt penalty trên. + Có thể liệt kê hết các phương án thực hiện loạt penalty trên không? + Có cách nào để tính hết các phương án để thực hiện loạt sút penalty trên? 2. NỘI DUNG BÀI HỌC 2.1. QUY TẮC CỘNG. HOẠT ĐỘNG GỢI Ý
Để thực hiện công việc đi từ thành phố A đến thành phố B, ta có thể thực hiện một trong hai phương án: Đi theo đường bộ hoặc theo đường thuỷ. + Đi theo đường bộ có: 3 cách. + Đi theo đường thuỷ có: 2 cách. Vậy có: cách đi từ A đến B. ☞Quy tắc: Một công việc được hoàn thành bởi một trong hai phương án. Nếu phương án này có m cách thực hiện, phương án kia có n cách thực hiện không trùng với bất kì cách nào của phương án thứ nhất thì công việc đó có cách thực hiện. Một cô gái có 2 cái mũ màu xanh khác nhau, 3 cái mũ màu vàng khác nhau. Cô gái muốn chọn một cái mũ để đội đi dạo phố với người yêu. Hỏi cô gái có mấy cách chọn? Để thực hiện công việc chọn mũ, cô gái có thể thực hiện theo một trong hai phương án: Chọn 1 mũ xanh hoặc chọn 1 mũ vàng. + Chọn 1 mũ xanh: Có 2 cách. + Chọn 1 mũ vàng: Có 3 cách. Vậy theo quy tắc cộng, ta có: cách chọn 1 cái mũ. ☞Chú ý: 1. + Số phần tử của tập hữu hạn X được ký hiệu là hoặc . + Quy tắc cộng có thể được phát biểu như sau: Nếu A và B là các tập hợp hữu hạn không giao nhau, thì + Đặc biệt: Nếu A và B là hai tập hữu hạn bất kì thì 2. Mở rộng quy tắc: + Giả sử một công việc có thể được thực hiện theo một trong k phương án . Có cách thực hiện phương án , cách thực hiện phương án ,…, và cách thực hiện phương án . Khi đó công việc có thể được thực hiện bởi cách. + Nếu là k tập hợp hữu hạn đôi một không giao nhau thì số phần tử của là: . 2.2. QUY TẮC NHÂN. HOẠT ĐỘNG GỢI Ý
a. Có bao nhiêu cách đi từ A đến C mà qua B chỉ một lần. b. Có bao nhiêu cách đi từ A đến C rồi quay lại A. a. Để đi từ thành phố A đến thành phố C, ta phải thực hiện đầy đủ cả hai hành động: Đi từ A đến B VÀ đi từ B đến C. + Đi từ A đến B có: 4 cách. + Ứng với mỗi cách đi từ A đến B ta có 2 cách đi từ B đến C. Vậy có: cách đi từ A đến C mà phải qua B. b. + Đi từ A đến C có: 8 cách. + Đi từ C về A có: 8 cách. Vậy có: cách đi từ A đến C rồi quay về A. ☞Quy tắc: Một công việc được hoàn thành bởi hai công đoạn liên tiếp. Nếu có m cách thực hiện công đoạn thứ nhất và ứng với mỗi cách thực hiện công đoạn thứ nhất có n cách thực hiện công đoạn thứ hai thì có cách hoàn thành công việc.
Để chọn một bộ đồ, cô gái cần phải thực hiện đầy đủ hai hành động liên tiếp: Chọn 1 cái quần VÀ chọn 1 cái áo. + Chọn 1 cái quần có: 2 cách. + Chọn 1 cái áo có: 3 cách. Vậy theo quy tắc nhân, ta có: cách chọn 1 bộ đồ. ☞Quá trình thực hiện công việc của cô gái ở ví dụ 4 này khác với cô gái ở ví dụ 2. Trong khi cô gái ở ví dụ 2 chỉ cần thực hiện một trong hai phương án (chọn mũ) là đã yên tâm đi dạo phố với người yêu. Còn cô gái ở ví dụ 4 phải thực hiện đầy đủ 2 hành động (chọn áo và chọn quần) thì cô mới yên tâm đi dạo phố với người yêu. Chứ cô mà chỉ mới thực hiện được một trong hai hành động (chỉ mới chọn áo hoặc chỉ mới chọn quần) mà đi chơi…. Thì HỎNG!@@ ☞Chú ý: Mở rộng quy tắc: Giả sử một công việc được hoàn thành bởi k công đoạn liên tiếp. Công đoạn có cách thực hiện, công đoạn có cách thực hiện,…, và công đoạn có cách thực hiện. Khi đó công việc được hoàn thành bởi cách. 3. LUYỆN TẬP.
a. Có bao nhiêu số có 3 chữ số? b. Có bao nhiêu số chẵn có 3 chữ số? c. Có bao nhiêu số có 3 chữ số khác nhau? d. Có bao nhiêu số lẻ có 3 chữ số khác nhau? 4. VẬN DỤNG VÀ MỞ RỘNG. 4.1. Vận dụng vào thực tế.
a) Hỏi có bao nhiêu cách chọn 1 bữa ăn gồm 1 món khai vị, 1 món chính, một canh và một món tráng miệng.
☞Chú ý: Trong bài toán đếm, việc chọn thứ tự thực hiện đóng một vai trò quan trọng. Có thể nói, nếu sắp xếp công việc tốt thì ta đếm nhanh và nhàn nhã, còn sắp xếp kém thì đếm phức tạp và dễ sai. Một nguyên tắc là những công đoạn có nhiều ràng buộc sẽ được ưu tiên thực hiện trước. Ngày soạn: 21/10/2018 CHỦ ĐỀ: HOÁN VỊ - CHỈNH HỢP – TỔ HỢP I.Mục tiêu 1. Kiến thức: - Học sinh phát biểu được khái niệm Hoán vị của n phần tử; khái niệm Chỉnh hợp, Tổ hợp chập k của n phần tử. - Học sinh nắm được công thức tính số các Hoán vị, số các Chỉnh hợp, số các Tổ hợp chập k của n phần tử. - Học sinh nêu được các ví dụ phân biệt Hoán vị, Chỉnh hợp, Tổ hợp. 2. Kỹ năng: - Tính được số các Hoán vị, số các Chỉnh hợp chập k của n phần tử, số Tổ hợp chập k của n phần tử. - Vận dụng giải quyết được các bài toán thực tế liên quan đến Hoán vị, Chỉnh hợp, Tổ hợp. 3. Thái độ: - Có thái độ tích cực trong học tập, chủ động trong tư duy, sáng tạo trong quá trình vận dụng. 4. Định hướng phát triển năng lực: Học sinh phát triển được các năng lực: + Năng lực sử dụng kiến thức: - Sử dụng qui tắc cộng; sử dụng qui tắc nhân để xây dựng công thức tính số các Hoán vị, số các Chỉnh hợp chập k của n phần tử, số các Tổ hợp chập k của n phần tử. + Năng lực phương pháp: - Tiếp cận khái niệm Hoán vị, Chỉnh hợp, Tổ hợp và công thức tính số các Hoán vị, số các Chỉnh hợp chập k của n phần tử, số các Tổ hợp chập k của n phần tử. + Năng lực giao tiếp, trao đổi thông tin: - Thực hiện trao đổi thảo luận trong nhóm để phân biệt và tính toán số các Hoán vị, số các Chỉnh hợp chập k của n phần tử, số các Tổ hợp chập k của n phần tử. II. Chuẩn bị của giáo viên và học sinh 1.Giáo viên: bảng phụ, một số hình ảnh. 2.Học sinh: Qui tắc cộng, qui tắc nhân, ví dụ áp dụng qui tắc cộng và qui tắc nhân để tính. III. Chuỗi hoạt động học 1.Giới thiệu: ( 3 phút ) Quan sát các hình: Hình 1:(16 cầu thủ) Chọn phương án huấn luyện giúp HLV Nguyễn Quốc Vũ dẫn dắt đội tuyển Việt Nam có thể đạt thành tích cao nhất ? Hình 2 ( 23 cầu thủ) Hình ảnh cảm động của HLV Park Hang Seo với học trò giải thích vì sao U23 Việt Nam lập nên kỳ tích. Ông HLV Park Hang Seo đã có phương án huấn luyện, phương án đội hình thi đấu như thế nào để U23 Việt Nam lập nên kỳ tích. Hình 3 ( 40 học sinh) Làm sao thầy chủ nhiệm lớp xây dựng được một tập thể lớp đạt kết quả cao nhất trong học tập và rèn luyện? 2.Nội dung bài học: 2.1 Hoán vị a) Tiếp cận: Hoạt động 1: + Lớp em có 40 học sinh, với phòng học có 4 dãy bàn mỗi dãy có 10 ghế em hãy giúp thầy chủ nhiệm lập 1 sơ đồ bố trí chỗ ngồi? Hoạt động 2: + Có bao nhiêu cách để em lập 1 sơ đồ bố trí chỗ ngồi? (gợi ý vận dụng qui tắc đếm để tính) b) Hình thành: => Định nghĩa: Hoán vị (SGK) => Công thức tính Pn= n! c) Củng cố: Hoạt động 3: + Tính số cách bố trí trận đấu của 6 cầu thủ trên sân của một đội bóng truyền ( giả sử tất cả các cầu thủ có thể thi đấu ở mọi vị trí )? + Tính số cách bố trí trận đấu của 11 cầu thủ trên sân của một đội bóng đá ( giả sử tất cả các cầu thủ có thể thi đấu ở mọi vị trí )? + Cho 2 ví dụ về hoán vị và tính số các hoán vị ? 2.2 Chỉnh hợp a) Tiếp cận: Hoạt động 4: + Em hãy giúp thầy chủ nhiệm chọn ra một ban cán sự lớp 5 người gồm: 1 lớp trưởng, 1 lớp phó học tập, 1 lớp phó văn thể, 1 lớp phó lao động, 1 lớp phó kỷ luật? + Có bao nhiêu cách đề em chọn ra ban cán sự lớp như vậy? ( giả sử ai cũng có thể làm được lớp trưởng, lớp phó) b) Hình thành: => Định nghĩa: Chỉnh hợp (SGK). => Công thức tính số chỉnh hợp: . c) Củng cố: Hoạt động 5: + Có bao nhiêu số tự nhiên có 4 chữ số khác nhau được lập ra 1,2,3,4,5,6,7,8,9. + Có bao nhiêu cách trao giải: 1 nhất, 1 nhì, 1 ba cho 12 học sinh thi học sinh giỏi quốc gia môn toán ( giả sử không có 2 học sinh nào cùng điểm và lấy đủ 3 giải cho 3 học sinh có số điểm: cao nhất, cao nhì, cao ba)? + Lấy một ví dụ về Chỉnh hợp và tính số các Chỉnh hợp? Hoán vị có là chỉnh hợp không? 2.3 Tổ hợp a) Tiếp cận Hoạt động 6: + Em hãy giúp thầy chủ nhiệm chọn ra một đội văn nghệ 7 người? + Có bao nhiêu cách để em chọn ra đội văn nghệ 7 người ( giả sử khả năng của các bạn là như nhau)? b) Hình thành => Định nghĩa: Tổ hợp (SGK) => Công thức tính số các tổ hợp: c) Củng cố Hoạt động 7: Bài 1) Thầy chủ nhiệm có bao nhiêu cách để chọn một nhóm 10 người đi lao động vệ sinh chuẩn bị cho khai giảng? Bài 2) Cho 30 điểm không có 3 điểm nào thẳng hàng hỏi có bao nhiêu tam giác được tạo thành từ 30 điểm trên? Bài 3) Cho ví dụ để phân biệt Hoán vị, Chỉnh hợp, Tổ hợp tính số các Hoán vị, Chỉnh hợp, Tổ hợp và rút ra nhận xét? TRẮC NGHIỆM Bài 1) Một liên đoàn bóng rổ có 10 đội, mỗi đội đấu với mỗi độ khác hai lần, một lần ở sân nhà và một lần ở sân khách. Tính số trận đấu được sắp xếp? A. 45 B. 90 C. 100 D. 180 Bài 2) Giả sử ta dùng 5 màu để tô cho 3 nước khác nhau trên bản đồ và không có màu nào được dùng hai lần. Tính số các cách để chọn những màu cần dùng? A. 5!.2! B. 8 C. 5!.3!2! D. 53 Bài 3) Tính số tam giác xác định bởi các đỉnh của một đa giác đều 10 cạnh? A. 35 B. 120 C. 240 D. 720 Bài 4) Nếu tất cả các đường chéo của đa giác đều 12 cạnh được vẽ thì số đường chéo là: A. 121 B. 66 C. 132 D. 54 Bài 5) Nếu một đa giác đều có 44 đường chéo, thì số cạnh của đa giác là: A. 11 B. 10 C. 9 D. 8 Bài 6) Sau bữa tiệc, mỗi người bắt tay một lần với mỗi người khác trong phòng. Có tất cả 66 lần bắt tay. Hỏi trong phòng có bao nhiêu người? A. 11 B. 12 C. 33 D. 67. 3. Luyện tập: A. Bài tập trắc nghiệm: 1. Xếp ngẫu nhiên 3 học sinh nam và 2 học sinh nữ thành một hàng ngang. Hỏi có bao nhiêu cách xếp nếu hai bạn nữ đứng cạnh nhau? A. 2!.3! . B. 5! . C. 2.2!.3! . D. 4.2!.3!. 2. Một hộp đựng 4 bi đỏ, 5 bi xanh, 7 bi vàng. Hỏi có bao nhiêu cách lấy được 3 viên bi trong đó chỉ có 2 màu A. 371 . B. 203 . C. 217 . D. 420. 3. Cho đa giác đều n đỉnh, n N,n 3 . Tìm n biết rằng đa giác đó có 135 đường chéo? A. n =15. B. n = 27. C. n = 8. D. n =18. 4. Một hộp chứa 20 quả cầu trong đó có 12 quả đỏ, 8 quả xanh. Hỏi có bao nhiêu cách lấy được 3 quả trong đó có ít nhất 1 quả xanh? A. 900. B. 920. C. 220. D. 56. 5. Một hộp đựng 8 bi xanh và 4 bi đỏ. Hỏi có bao nhiêu cách lấy ra được 3 bi cùng màu? A. 60 . B. 360. C. 224 . D. 8064. 6. Một đội bóng chuyền nam trường Bạch Đằng có 12 học sinh gồm 7 học sinh K12, 5 học sinh K11. Trong 1 trận đấu, huấn luyện viên cần chọn ra 6 bạn, trong đó có ít nhất 4 bạn K12. Hỏi có bao nhiêu cách? A. 495. B. 924. C. 462. D. 665280. 7. Có 8 bạn nam và 8 bạn nữ xếp thành 1 hàng dọc. Hỏi có bao nhiêu cách xếp? A. 64. B. 16. C. 16!. D. 8!.8!. 8. Số các tổ hợp chập k của một tập hợp gồm n phần tử (1 k n ) A. . B. . C. . D. . 9. Tìm tất cả các số nguyên dương n thỏa mãn: ? A. n = 5; n =12. B. n = 5; n = 6 . C. n = 6 . D. n = 6; n =12. 10. Tìm tất cả các số nguyên dương n thỏa mãn: ? A. 16. B. 15. C. 14. D. 13. 11. Tìm tất cả các số nguyên dương dương n thỏa mãn: ? A. 12 . B. 11. C. 13. D. 14. 12. Trong hộp kín đựng 2 bi đỏ, 5 bi trắng, 7 bi vàng. Hỏi có bao nhiêu cách lấy ra 4 viên bi có đủ 3 màu. A. . B. . C. . D. . 13. Tìm n biết ? A. 16 . B. 2 . C. 12. D. 9. 14. Một tổ có 15 học sinh trong đó có 9 nam, 6 nữ. Hỏi có bao nhiêu cách chia tổ thành 3 nhóm sao cho mỗi nhóm có đúng 3 nam và 2 nữ. A. . B. . C. . D. . 15. Dùng sáu chữ số 1;2;3;4;5;6 để viết các số tự nhiên gồm 4 chữ số khác nhau.Các số mà trong đó bắt đầu bằng 12 là : A.. B. . C. . D. . B. Bài tập tự luận 1. Có bao nhiêu cách sắp xếp 3 quyển sách Toán, 4 quyển sách Lý, 5 quyển sách Hóa vào một kệ dài biết rằng: a) Các quyển sách khác nhau từng đôi một và các quyền sách xếp tùy ý. b) Các quyển sách khác nhau từng đôi một và các sách cùng môn được xếp kề nhau. 2. Cho tập . Có bao nhiêu số gồm 7 chữ số được lập từ tập A thỏa: a) Khác nhau từng đôi một. b) Khác nhau từng đôi một và được bắt đầu bằng 123. c) Khác nhau từng đôi một và ba chữ số 3,4,5 phải đứng cạnh nhau. 3.Trường THPT Trần Văn Dư có 10 học sinh ưu tú, cần chọn 5 em trong 10 em đó để xếp thành một hàng ngang đón tiếp các đại biểu đến thăm trường. Hỏi có bao nhiêu cách xếp 5 em thành một hàng ngang thỏa mãn yêu cầu trên. 4. Cho tập . Có bao nhiêu cách lập ra một số có 3 chữ số khác nhau lấy từ A sao cho: a) Số tạo thành là số chẵn. b) Số tạo thành là một số không có chữ số 5. c) Số tạo thành là một số nhỏ hơn 278. 5. Cẫn xếp 3 nam và 2 nữ vào 1 hàng ghế có 7 chỗ ngồi sao cho 3 nam ngồi kề nhau và 2 nữ ngồi kề nhau. Hỏi có bao nhiêu cách. 6. Một nhóm học sinh gồm 7 nam và 3 nữ. Giáo viên muốn chọn 5 em trong nhóm để làm công tác xã hội. Hỏi có bao nhiêu cách chọn nếu: a) Chọn 5 em tùy ý. b) Phải có ít nhất 1 nữ và 3 nam. 7.Cho tập X gồm 10 phần tử khác nhau. Tính số tập con khác rỗng chứa một số chẵn các phần tử của X. 8. Một hộp đựng 15 viên bi khác nhau gồm 4 bi đỏ, 5 bi trắng và 6 bi vàng. Hỏi có bao nhiêu cách chọn 4 viên bi từ hộp đó sao cho có đủ ba màu. 4. Vận dụng và mở rộng 4.1 Vận dụng vào thực tế: (10 phút) Quay lại vấn đề các hình ảnh 1 ban đầu với 16 cầu thủ. Em hãy giúp huấn luyện viên Nguyễn Quốc Vũ tính các phương án huấn luyện: a) Số cách chọn ra hai đội đối kháng để luyện tập? Số cách thay đổi vị trí và trận pháp của mỗi đội? Tính số cách để chọn ra một đội tuyển chính thức để đi thi đấu quốc tế. ( Biết có 3 người có thể truyền hai có 8 người có thể công chính có 5 người có thể thủ tốt). b) Em hãy đưa ra kế hoạch cụ thể về huấn luyện và chọn đội tuyển chính thức cho huấn luyện viên Park Hang Seo dẫn dắt U23 Việt Nam có thể đạt thành tích cao nhất có thể. 4.2 Mở rộng và tìm tòi: (10 thút ) 1. Trên mặt phẳng cho 20 điểm trong đó không có 3 điểm nào thẳng hàng. Giả sử trong các đường thẳng đi qua 2 trong 20 điểm đã cho không có hai đường thẳng nào song song và cũng không có ba đường thẳng nào đồng qui tại một điểm khác với 20 điểm đã cho. Hãy tính số tam giác tạo bởi các đường thẳng đó mà mỗi tam giác đều không có đỉnh là một trong 20 điểm đã cho. 2. Cho hình hộp chữ nhật có 3 kích thước là các số tự nhiên. Người ta sơn màu xanh tất các mặt của hình hộp. Hình hộp được phân chia thành các hình lập phương đơn vị bởi các mặt phẳng song song với các mặt của nó. Tìm kích thước hình hộp biết rằng số hình lập phương đơn vị không có mặt nào màu xanh bằng một phần 3 tổng số các hình lập phương. Ghi chú: ( Các hoạt động chia làm 4 nhóm cử ra một nhóm trưởng và một thư kí cử ra 1 người báo cáo kết quả các thành viên trong nhóm tích cực thảo luận chia ra hai nhóm báo cáo hai nhóm phản biện lại; Thầy chính xác, hệ thống lại kiến thức Học sinh tự học tập rèn luyện ở nhà 45 phút). Ngày soạn: 28/10/2018 CHỦ ĐỀ: NHỊ THỨC NIU-TƠN VÀ TAM GIÁC PAX-CAN I. MỤC TIÊU BÀI HỌC 1. Về kiến thức: - HS nắm được công thức nhị thức Niu-tơn. - Hệ số của khai triển nhị thức Niu-tơn qua tam giác Paxcan. 2. Về kỹ năng: - Biết khai triển nhị thức Niu-tơn với số mũ cụ thể. - Tìm được hệ số của đa thức khi khai triển . - Điền được hàng sau của nhị thức Niu-tơn khi biết hàng ở ngay trước đó. 3. Về tư duy và thái độ: - Sáng tạo trong tư duy. - Tư duy các vấn đề của toán học một cách logic và hệ thống. - Tự giác, tích cực trong học tập. 4. Đinh hướng phát triển năng lực: - Năng lực tự học, sáng tạo và giải quyết vấn đề: đưa ra phán đoán trong quá trình tìm hiểu và tiếp cận các hoạt động bài học vào trong thực tế. - Năng lực hợp tác và giao tiếp: kỹ năng làm việc nhóm và đánh giá lẫn nhau. - Năng lực vận dụng kiến thức đã học để giải quyết các bài tập nâng cao hơn. II. CHUẨN BỊ: • Học sinh:
• Giáo viên :
III. CHUỖI CÁC HOẠT ĐỘNG HỌC:
HỎI: Ông là ai? Trong cơ học, ông đưa ra nguyên lý bảo toàn động lượng (bảo toàn quán tính). Trong quang học, ông khám phá ra sự tán sắc ánh sáng, giải thích việc ánh sáng trắng qua lăng kính trở thành nhiều màu. Trong toán học, ông cùng với Gottfried Leibniz phát triển phép tính vi phân và tích phân. Ông cũng là người đưa ra công thức quan trọng của bài học hôm nay đó là công thức nhị thức Newton. Để hiểu rõ hơn về công thức nhị thức Niu-tơn và việc vận dụng công thức vào giải bài tập như thế nào, thì ta đi vào nội dung bài học. 2. NỘI DUNG BÀI HỌC (HOẠT ĐỘNG HÌNH THÀNH KIẾN THỨC) 2.1. Đơn vị kiến thức 1: Công thức nhị thức Niu-tơn (15 PHÚT) a) Tiếp cận: - GV giao nhiệm vụ Nhóm 1 - Nêu các hằng đẳng thức , ? - Nhận xét số mũ của a, b trong khai triển , Nhóm 2 - Nhắc lại định nghĩa và các tính chất của tổ hợp. - Sử dụng MTCT để tính: bằng bao nhiêu? GV đặt câu hỏi: Các tổ hợp trên có liên hệ gì với hệ số của khai triển , . GV gợi ý dẫn dắt học sinh đưa ra công thức b) Hình thành kiến thức: Công thức nhị thức Niu-tơn: Dạng tường minh: Dạng thu gọn: Số hạng gọi là số hạng tổng quát của khai triển GV đặt câu hỏi: CH1: Số các số hạng của , với n=0,1,2,3,4? CH2:Tổng quát: Khai triển có bao nhiêu số hạng? đặc điểm chung của các số hạng đó? GV chính xác hóa lại các câu trả lời của hs và bổ sung kiến thức cho các em. c) Củng cố kiến thức: VD1: Viết khai triển theo công thức nhị thức Niu-tơn *NHÓM 1: *NHÓM 2: *NHÓM 3: GV chỉnh sửa và đưa ra kết quả đúng. VD2: (3 nhóm cùng làm) Tìm số hạng thứ 7 kể từ trái sang của khai triển thành đa thức bậc 9 đối với x. GV chính xác hóa kết quả . GVTQ: số hạng là số hạng thứ k+1 của khai triển (kể từ trái sang). VD3:(3 nhóm cùng làm) Hệ số của trong khai triển thành đa thức bậc 12 đối với x là:
GV giao nhiệm vụ:(3 nhóm cùng làm)
GV tổng quát: : là số tập con gồm 1 phần tử của tập gồm có n phần tử. : là số tập con gồm k phần tử của tập gồm có n phần tử. 2.2. Đơn vị kiến thức 2: Tam giác PAX-CAN (5 PHÚT) a) Tiếp cận : GV giao nhiệm vụ *NHÓM 1: Tính hệ số của khai triển . *NHÓM 2: Tính hệ số của khai triển . *NHÓM 3: Tính hệ số của khai triển . GV yêu cầu: Viết vào giấy theo hàng như sau Tam giác vừa xây dựng là tam giác Paxcan b) Hình thành kiến thức: Trong công thức nhị thức Niu-tơn, cho n=0,1,2,… và xếp các hệ số thành dòng, ta nhận được tam giác sau đây, gọi là tam giác Pa-xcan.
GV: Nêu cách xây dựng tam giác, suy ra quy luật các hàng. c) Củng cố kiến thức: GV giao nhiệm vụ:(3 nhóm cùng làm) *NHÓM 1: Hãy điền tiếp vào tam giác Paxcan ở hàng thứ 7. *NHÓM 2: Hãy điền tiếp vào tam giác Paxcan ở hàng thứ 8. *NHÓM 3: Hãy điền tiếp vào tam giác Paxcan ở hàng thứ 9. 3. HOẠT ĐỘNG CỦNG CỐ TOÀN BÀI (10 PHÚT) Câu 1: Khai triển biểu thức ta được : A. . B. . C. . D. . Câu 2: Cho khai triển nhị thức Newton: . Tính . A. B. C. D. Câu 3 : Hệ số của trong khai triển là A. B. C. D. Câu 4: Tìm hạng tử không chứa trong khai triển với A. B. C. D. Câu 5: Trong khai triển với . Hãy tìm số hạng đứng chính giữa của khai triển. A. B. C. D.
4. HOẠT ÐỘNG VẬN DỤNG (8 PHÚT) 4.1. Các bài toán về hệ số nhị thức. Ví dụ 1: (Đại học Thuỷ lợi cơ sở II, 2000) Khai triển và rút gọn đa thức: Ta được đa thức: Xác định hệ số a9. Giải: Hệ số x9 trong các đa thức lần lượt là: Do đó: =11+55+220+715+2002=3003 Ví dụ 2: (ĐH HCQG, 2000)
Giải:
Ta chọn Vậy số hạng thứ 3 trong khai triển chứa x8 và có hệ số là:
Với x=1 thì: Do đó hệ số a (của x12) là: Ví dụ 3: (HVKTQS, 2000) Khai triển đa thức: Tìm max Ví dụ 4: (ĐH SPHN-2001) Cho khai triển nhị thức: 4.2. Áp dụng nhị thứ Newton để chứng minh hệ thức và tính tổng tổ hợp. Thuần nhị thức Newton: Dấu hiệu nhận biết: Khi các số hạng của tổng đó có dạng thì ta sẽ dùng trực tiếp nhị thức Newton: . Việc còn lại chỉ là khéo léo chọn a,b. Ví dụ 5: Tính tổng Giải: Dễ dàng thấy tổng trên có dạng như dấu hiệu nêu trên. Ta sẽ chọn a=3, b=-1. Khi đó tổng trên sẽ bằng (3-1)16=216 Ví dụ 6: ( ĐH Hàng Hải-2000) Chứng minh rằng: 5. TÌM TÒI SÁNG TẠO (2 PHÚT) 5.1 Giới thiệu về Newton: Isaac Newton Jr. là một nhà vật lý, nhà thiên văn học, nhà triết học, nhà toán học, nhà thần học và nhà giả kim thuật người Anh, được nhiều người cho rằng là nhà khoa học vĩ đại và có tầm ảnh hưởng lớn nhất. Theo lịch Julius, ông sinh ngày 25 tháng 12 năm 1642 và mất ngày 20 tháng 3 năm 1727; theo lịch Gregory, ông sinh ngày 4 tháng 1 năm 1643 và mất ngày 31 tháng 3 năm 1727. Luận thuyết của ông về Philosophiae Naturalis Principia Mathematica (Các Nguyên lý Toán học của Triết học Tự nhiên) xuất bản năm 1687, đã mô tả về vạn vật hấp dẫn và 3 định luật Newton, được coi là nền tảng của cơ học cổ điển, đã thống trị các quan niệm về vật lý, khoa học trong suốt 3 thế kỷ tiếp theo. ông cho rằng sự chuyển động của các vật thể trên mặt đất và các vật thể trong bầu trời bị chi phối bởi các định luật tự nhiên giống nhau; bằng cách chỉ ra sự thống nhất giữa Định luật Kepler về sự chuyển động của hành tinh và lý thuyết của ông về trọng lực, ông đã loại bỏ hoàn toàn Thuyết nhật tâm và theo đuổi cách mạng khoa học. Trong cơ học, Newton đưa ra nguyên lý bảo toàn động lượng (bảo toàn quán tính). Trong quang học, ông khám phá ra sự tán sắc ánh sáng, giải thích việc ánh sáng trắng qua lăng kính trở thành nhiều màu. Trong toán học, Newton cùng với Gottfried Leibniz phát triển phép tính vi phân và tích phân. Ông cũng đưa ra nhị thức Newton tổng quát. Năm 2005, trong một cuộc thăm dò ý kiến của Hội Hoàng gia về nhân vật có ảnh hưởng lớn nhất trong lịch sử khoa học, Newton vẫn là người được cho rằng có nhiều ảnh hưởng hơn Albert Einstein. 5.2. Giới thiệu về Pascal Blaise Pascal (tiếng Pháp: [blɛz paskal]; 19 tháng 6 nãm 1623 – 19 tháng 8 nãm 1662) là nhà toán học, vật lý, nhà phát minh, tác gia, và triết gia Cõ Ðốc ngýời Pháp. Là cậu bé thần ðồng, Pascal tiếp nhận nền giáo dục từ cha, một quan chức thuế vụ tại Rouen. Nghiên cứu ðầu tay của Pascal là trong lĩnh vực tự nhiên và khoa học ứng dụng, là những ðóng góp quan trọng cho nghiên cứu về chất lýu, và làm sáng tỏ những khái niệm về áp suất và chân không bằng cách khái quát hóa công trình của Evangelista Torricelli. Pascal cũng viết ðể bảo vệ phýõng pháp khoa học. Nãm 1642, khi còn là một thiếu niên, Pascal bắt tay vào một số nghiên cứu tiên phong về máy tính. Sau ba nãm nỗ lực với nãm mýõi bản mẫu, cậu ðã phát minh máy tính cõ học, chế tạo 20 máy tính loại này (gọi là máy tính Pascal, về sau gọi là Pascaline) trong vòng mýời nãm. Pascal là một nhà toán học tài danh, giúp kiến tạo hai lĩnh vực nghiên cứu quan trọng: viết một chuyên luận xuất sắc về hình học xạ ảnh khi mới 16 tuổi, rồi trao ðổi với Pierre de Fermat về lý thuyết xác suất, có ảnh hýởng sâu ðậm trên tiến trình phát triển kinh tế học và khoa học xã hội ðýõng ðại. Tiếp býớc Galileo và Torricelli, nãm 1646, ông phản bác những ngýời theo Aristotle chủ trýõng thiên nhiên không chấp nhận khoảng không. Kết quả nghiên cứu của Pascal ðã gây ra nhiều tranh luận trýớc khi ðýợc chấp nhận. Nãm 1646, Pascal và em gái Jacqueline gia nhập một phong trào tôn giáo phát triển bên trong Công giáo mà những ngýời gièm pha gọi là thuyết Jansen.Cha ông mất nãm 1651. Tiếp sau một trải nghiệm tâm linh xảy ra cuối nãm 1654, ông trải qua "sự qui ðạo thứ nhì", từ bỏ nghiên cứu khoa học, và hiến mình cho triết học và thần học. Hai tác phẩm nổi tiếng nhất của Pascal ðánh dấu giai ðoạn này: Lettres provinciales (Những lá thý tỉnh lẻ) và Pensées (Suy týởng), tác phẩm ðầu ðýợc ấn hành trong bối cảnh tranh chấp giữa nhóm Jansen với Dòng Tên. Cũng trong nãm này, ông viết một luận vãn quan trọng về tam giác số học. Pascal có thể chất yếu ðuối, nhất là từ sau 18 tuổi ðến khi qua ðời, chỉ hai tháng trýớc khi tròn 39 tuổi. Trong suốt cuộc đời mình, Pascal luôn có ảnh hưởng trên nền toán học. Năm 1653, ông viết Traité du triangle arithmétique ("Chuyên luận về Tam giác Số học") miêu tả một biểu mẫu nay gọi là Tam giác Pascal. Tam giác này có thể được trình bày như sau: Tam giác Pascal. Mỗi con số là tổng của hai con số ngay bên trên. Hàng đầu tiên là con số 1, hàng kế tiếp là hai con số 1. Ở những hàng tiếp theo:
1+1=2, 1+2=3, 2+1=3, 1+3=4, 3+3=6, 3+1=4, v..v Ngày soạn: 4/11/2018 CHỦ ĐỀ: PHÉP THỬ - BIẾN CỐ I. MỤC TIÊU Sau bài học, HS đạt được:
- Hiểu khái niệm Phép thử ngẫu nhiên;Không gian mẫu và biến cố.
- Học sinh chủ động, tích cực học tập. - Tạo sự say mê, hứng thú với bộ môn.
II. CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH
- Kế hoạch bài học. - Thiết bị dạy học: Máy chiếu, phiếu học tập, đồ dùng dạy học… 2. Chuẩn bị của học sinh - Chuẩn bị tài liệu học tập, máy tính cầm tay, đồ dùng học tập. III. TỔ CHỨC CÁC HOẠT ĐỘNG HỌC CHO HỌC SINH:
HOẠT ĐỘNG 1. Hoạt động khởi động (5 phút) (1) Mục tiêu: Kiểm tra lại kiến thức cũ, gợi tình huống có vấn đề, kích thích sự hứng thú học tập của học sinh (2) Nhiệm vụ: đoán kết quả cảu các hoạt động rút quân bài, lắc súc sắc (3) Phương thức thực hiện: Hoạt cá nhân (4) Sản phẩm: kết quả của thí nghiệm (5) Tiến trình thực hiện: Bước 1. Giao nhiệm vụ - GV: đoán kết quả khi rút 1 quân bài từ bộ bài 52 quân đoán kết quả khi rút 4 quân bài từ bộ bài 52 quân đoán kết quả khi khi lắc 2 con súc sắc Ví dụ: Một công ti sổ số kiến thiết phát hành một triệu vé với cơ cấu giải thưởng: 1 giải đặc biệt, 1 giải nhất, 2 giải nhì, 3 giải 3 và 5 giải khuyến khích. Bạn duy mua 5 vé, bạn Hà mua 20 vé. Hỏi bạn nào có khả năng trúng thưởng nhiều hơn Bước 2. Thực hiện nhiệm vụ - HS: Tiếp nhận và sẵn sàng thực hiện nhiệm vụ. Phân công nhiệm vụ, thảo luận nhóm, thống nhất, thư kí ghi chép, sau đó đại diện nhóm báo cáo kết quả. - GV: Quan sát và giúp đỡ các nhóm nếu gặp khó khăn. Bước 3. Thảo luận, trao đổi, báo cáo - GV: Sau khi 1 nhóm báo cáo, GV yêu cầu các nhóm khác nhận xét bổ sung. - HS: Kết quả khi rút 1 quân bài có thể là một trong các quân có trong bộ bài Kết quả khi rút 4 quân bài có thể là bốn trong các quân có trong bộ bài Kết quả khi đoán súc sắc Bước 4. GV: Nhận xét, đánh giá và nêu ra tình huống có vấn đề cần giải quyết. Vẽ miền nghiệm của các bất phương trình trên
HOẠT ĐỘNG 2. Chiếm lĩnh khái phép thử , (10 phút) (1) Mục tiêu: nắm được khái niệm phép thử ngẫu nhiên (2) Nhiệm vụ: Nghiên cứu định nghĩa và trả lời câu hỏi theo gợi ý của GV (3) Phương thức thực hiện: Hoạt động cá nhân, hoạt động nhóm (4) Sản phẩm: lấy dược các ví dụ về phép thử ngẫu nhiên (5) Tiến trình thực hiện Bước 1. GV Giao nhiệm vụ cho hs thực hiện trong 7 phút: Lấy các ví dụ về trong thực tế Rút ra khái niệm thế nào là phép thử ngẫu nhiên Bước 2. Thực hiện nhiệm vụ - HS: Tiếp nhận và sẵn sàng thực hiện nhiệm vụ. báo cáo kết quả cá nhân. - GV: Quan sát và giúp đỡ cá nhân hs nếu gặp khó khăn. Bước 3. Thảo luận, trao đổi, báo cáo - GV: Sau khi hs báo cáo, GV yêu cầu các hs khác nhận xét bổ sung. - HS: gieo con xúc xắc, rút một quan bài từ bộ tú lơ khơ, bắn một viên đạn vào bia ….. Bước 4. Phương án KTĐG GV: Nhận xét, đánh giá và chốt lại mục tiêu cần đạt, hướng dẫn cách biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn. HOẠT ĐỘNG 3. Khái niệm không gian mẫu (10 phút) (1)Mục tiêu: nắm được khái niệm không gian mẫu của phép thử (2) Nhiệm vụ: Tìm kết quả (3) Phương thức thực hiện: Hoạt động nhóm, cá nhân (4) Sản phẩm: Xác định không giam mẫu cảu một số phép thử (5) Tiến trình thực hiện Bước 1. Xác đinh kết quả cảu các phép thử ngẫu nhiêm + gieo con xúc xắc, + rút một quan bài từ bộ tú lơ khơ, + bắn một viên đạn vào bia + Tung 1 đồng xu + Tung 2 đồng xu Rút ra khái niệm không gian mẫu cảu phép thử Bước 2. Thực hiện nhiệm vụ - HS: Tiếp nhận và sẵn sàng thực hiện nhiệm vụ. Phân công nhiệm vụ, thảo luận nhóm, thống nhất, thư kí ghi chép, sau đó đại diện nhóm báo cáo kết quả. - GV: Quan sát và giúp đỡ các nhóm nếu gặp khó khăn. Bước 3. Thảo luận, trao đổi, báo cáo Xác đinh kết quả cảu các phép thử ngẫu nhiêm + gieo con xúc xắc, + rút một quan bài từ bộ tú lơ khơ, + bắn một viên đạn vào bia + Tung 1 đồng xu + Tung 2 đồng xu Rút ra khái niệm không gian mẫu Bước 4. Phương án KTĐG GV: Nhận xét, đánh giá và chốt lại mục tiêu cần đạt HOẠT ĐỘNG 4. Khái niệm Biến cố (15 phút) (1)Mục tiêu: nắm được khái niệm Biến cố (2) Nhiệm vụ: Tìm kết quả (3) Phương thức thực hiện: Hoạt động nhóm, cá nhân (4) Sản phẩm: Xác định biến cố của một số phép thử (5) Tiến trình thực hiện Bước 1. Xác đinh số phần tử của một phép thử thử ngẫu nhiêm + gieo con xúc xắc, sao cho các mặ đều chẵn + rút bốn quan bài từ bộ tú lơ khơ, sao cho được 4 quân Át + Tung đồng xu 2 lần kết quả hai lần gieo như nhau Rút ra khái niệm không gian mẫu cảu phép thử Bước 2. Thực hiện nhiệm vụ - HS: Tiếp nhận và sẵn sàng thực hiện nhiệm vụ. Phân công nhiệm vụ, thảo luận nhóm, thống nhất, thư kí ghi chép, sau đó đại diện nhóm báo cáo kết quả. - GV: Quan sát và giúp đỡ các nhóm nếu gặp khó khăn. Bước 3. Thảo luận, trao đổi, báo cáo Xác đinh kết quả cảu các phép thử ngẫu nhiêm +gieo con xúc xắc, sao cho các mặ đều chẵn + rút bốn quan bài từ bộ tú lơ khơ, sao cho được 4 quân Át + Tung đồng xu 2 lần kết quả hai lần gieo như nhau Rút ra khái niệm Biến cố Bước 4. Phương án KTĐG Hoạt động cá nhân bằng phiếu học tập GV: Nhận xét, đánh giá và chốt lại mục tiêu cần đạt
HOẠT ĐỘNG 5. Củng cố (5 phút) (1) Mục tiêu: ôn lại khái niệm phép thử, không gian mẫu, biến cố (2) Nhiệm vụ: lắng nghe, ghi nhớ (3) Phương thức thực hiện: Hoạt động cá nhân (4) Sản phẩm: học sinh nắm được kiến thức (5) Tiến trình thực hiện Bước 1. GV Giao nhiệm vụ cho hs thực hiện ở nhà: Giáo viên và học sinh cùng giải quyết tình huống có vấn đề Giao nhiệm vụ học sinh làm bài tập về nhà Bước 2. Thực hiện nhiệm vụ - HS: Nhận nhiệm vụ, chuẩn bị ở nhà ra sách bài tập. - GV: Định hướng một số ý bài tập mà học sinh chưa rõ hướng đi. Ngày soạn: 25/11/2018 ÔN TẬP CHUYÊN ĐỀ 2 I.MỤC TIÊU : 1.Về kiến thức : -Nắm vững đ/n qui tắc cộng, qui tắc nhân. Phân biệt hai qui tắc . -Nắm vững các k/n hoán vị, chỉnh hợp, tổ hợp . -Nắm vững k/n phép thử, biến cố, không gian mẫu . -Định nghĩa xác suất cổ điển, tính chất của xs . 2.Về kỹ năng : -Biết cách tính số pt của tập hợp dựa vào qt cộng và nhân . -Phân biệt hoán vị, chỉnh hợp, tổ hợp. -Biết cách biểu diễn biến cố bằng lời và tập hợp . -Biết xác định không gian mẫu và tính số pt của kg mẫu . -Tính được xs của một biến cố . 3.Về tư duy và thái độ : Tích cực hoạt động nhóm . II.CHUẨN BỊ CỦA GV VÀ HS ; GV: Phiếu học tập HS: Chuẩn bị bài tập ở nhà III.CHUỖI CÁC HOẠT ĐỘNG 3.Luyện tập +Chuyển giao:giao nhiệm vụ,thực hiện cá nhân.(mỗi nhóm 3 câu) +Thực hiện: học sinh tích cực trong hoạt động nhóm. GV nhắc nhở học sinh tích cực trong giải quyết các vấn đề. +Báo cáo kết quả và thảo luận:trình bày thuyết trình đối với câu ở mức độ nhận biết và thông hiếu và trình bày bảng đối với các câu ở mức độ vận dụng. +Đánh giá,nhận xét và kết luận:giáo viên nhận xét, đánh giá và hoàn thiện. Trắc nghiệm
A.. B. . C.. D. .
A. 64. B. 16. C. 32. D. 20.
A. 60. B. 40. C. 72. D. 162.
A. 12. B. 8. C. 6. D. 9.
A. 72. B. 132. C. 18. D. 23.
A. 6. B. 10. C. 5. D. 20.
A. 7. B. 1. C. 45. D. 10.
A. . B. . C. . D. .
A. 36. B. 5040. C. 181440. D. 2250.
A. 95040. B. 792. C. 120. D. 5040.
A. 35. B. 45. C. 210. D. 70.
A. . B. . C. . D. .
A. 120. B. 20. C. 216. D. 64.
A. 20. B. 10. C. 40. D. 80.
A. 48. B. 120. C. 12. D. 24.
A. . B. . C. . D. .
A. . B. . C. . D. .
A. 28. B. 24. C. 26. D. 20.
A. . B. . C. . D. .
A. P “Tích số chấm hai lần gieo là chẵn.”. B. N “Tổng số chấm hai lần gieo là chẵn.”. C. M “Lần thứ hai hơn lần thứ nhất hai chấm.”. D. Q “Số chấm hai lần gieo hơn kém 2.”.
A. Gieo một đồng tiền hai mặt giống nhau. B. Bắn một viên đạn vào bi. C. Hỏi ngày sinh của một người lạ. D. Gieo một con xúc sắc 2 lần.
A. 9. B. 24. C. 12. D. 18.
A. và . B. và . C. và . D. và .
A. . B. . C. . D. .
A. N. “Lần thứ nhất xuất hiện mặt ”. B. M. “Kết quả hai lần gieo là mặt ”. C. Q. “Chỉ lần thứ nhất xuất hiện mặt ”. D. P. “Lần thứ nhất xuất hiện mặt ”.
A. Đối nhau. B. Xung khắc và không phải là đối nhau. C. Không thể. D. Chắc chắn.
A. và . B. và . C. và. D. và .
A. . B. . C. . D. .
A. . B. . C. . D. .
A. . B. . C. . D. .
A. . B. . C. . D. .
A. . B. . C. . D. .
A. . B. . C. . D. .
A. . B. . C. . D. .
A. . B. . C. . D. .
A. . B. . C. . D. .
A. . B. . C. . D. .
A. 2 biến cô xung khắc và độc lập. B. 2 biến cố độc lập. C. 2 biến cố xung khắc. D. 2 biến cố đối.
A. . B. . C. . D. .
A. . B. . C. . D. . 4.Mở rộng +Chuyển giao:giao nhiệm vụ,thực hiện cá nhân. +Thực hiện: học sinh tích cực trong hoạt động cá nhân,thảo luận với nhau trong các câu hỏi khó. GV nhắc nhở học sinh tích cực trong giải quyết các vấn đề. +Báo cáo kết quả và thảo luận:4 học sinh lên bảng trình bày +Đánh giá,nhận xét và kết luận:giáo viên nhận xét, đánh giá và hoàn thiện. CHUYÊN ĐỀ 3 Ngày soạn: 2/12/2018 CHỦ ĐỀ: PHƯƠNG PHÁP QUY NẠP TOÁN HỌC I. Mục tiêu của bài: 1. Kiến thức: Nắm được phương pháp chứng minh quy nạp đối với các mệnh đề phụ thuộc vào số tự nhiên n∈ N. 2. Kỹ năng: * Chứng minh quy nạp các mệnh đề phụ thuộc vào số tự nhiên n ∈ N. * Vận dụng giải một số bài tập đơn giản trong sgk 3. Thái độ: * Tư duy logic, nhạy bén và hệ thống. * Vận dụng được kiến thức đã học vào bài tập cũng như trong cuộc sống. * Vận dụng giải một số bài tập đơn giản trong sgk * Tích cực tham gia vào bài học, có tinh thần hợp tác. * Tự tin và có lập trường khi thế giới quan về môi trường sống được nâng cao thêm một bước. 4. Đinh hướng phát triển năng lực: * Năng lực chung: tự học, giải quyết vấn đề, tư duy, tự quản lý, giao tiếp * Năng lực hợp tác. * Năng lực giải quyết vấn đề. * Năng lực tương tác giữa các nhóm và các cá nhân. * Năng lực vận dụng và quan sát. * Năng lực tính toán. * Năng lực chuyên biệt: sử dụng máy tính bỏ túi và tính toán. II. Chuẩn bị của giáo viên và học sinh 1. Chuẩn bị của giáo viên: Thiết bị dạy học: Thước kẻ, Copa, các thiết bị cần thiết cho tiết này,… Học liệu: Sách giáo khoa, tài liệu liên quan đến kiến thức chứng minh quy nạp. 2. Chuẩn bị của học sinh: Chuẩn bị các nội dung liên quan đến bài học theo sự hướng dẫn của giáo viên như chuẩn bị tài liệu, bảng phụ. III. Chuỗi các hoạt động học 1. GIỚI THIỆU: (7 phút) Bài toán 1.
Cả 5 bạn ấy đều học bài. Thầy kết luận: “Cả lớp 11C1 học bài”. Thầy kết luận như vậy có hợp lí không? Nếu không làm thế nào để có kết luận đúng. Bài toán 2. GV treo bảng phụ GV phân nhóm: Nhóm 1, 2 thảo luận câu 1; Nhóm 3, 4 thảo luận câu 2 HS quan sát bảng phụ và tiến hành trao đổi, thảo luận theo nhóm Câu 1. Cho mệnh đề P(n): “” Với n=1: 31 < 1+100 Đúng n=2: 32 < 2+100 Đúng n=3: 33 < 3+100 Đúng n=4: 34 < 4+100 Đúng Với n=5 thì mệnh đề P(n) đúng hay sai? Vậy với n là số nguyên dương thì mệnh đề P(n) đúng hay sai? Câu 2. Cho mệnh đề Q(n): “” Với n=1: 21 > 1 Đúng n=2: 22 > 2 Đúng n=3: 23 > 3 Đúng n=4: 24 > 4 Đúng Với n=5 thì mệnh đề Q(n) đúng hay sai? Vậy với n là số nguyên dương thì mệnh đề Q(n) đúng hay sai? Trả lời: Với mọi n ∈ N* thì P(n) sai vì P(5) sai Trả lời: Ta có Q(5) đúng và với mọi n ∈ N* thì Q(n) cũng đúng. GV nhận xét: Muốn chứng tỏ một kết luận là đúng, ta phải chứng minh nó đúng trong mọi trường hợp. Xét Q(n), ta thấy với mọi số nguyên dương n>5 thì Q(n) luôn đúng, song ta vẫn chưa thể khẳng định rằng Q(n) là đúng với mọi n ∈ N*. Vậy, để chứng minh những mệnh đề liên quan đến số tự nhiên n ∈ N* là đúng với mọi n ta không thể thử trực tiếp được vì tập hợp số tự nhiên là vô hạn mà ta dùng phương pháp quy nạp toán học. 2. NỘI DUNG BÀI HỌC: 2.1 Phương pháp quy nạp toán học (15 phút) +) HĐ1: Tiếp cận HĐ1.1. Chứng minh rằng với mọi n ∈ N*, thì: 1 + 3 + 5 + … + (2n – 1) = n2 (*) => Bài toán này hs có thể giải quyết như thế nào ? HĐ1.2. Để chứng minh những mệnh đề liên quan đến số tự nhiên n ∈ N* là đúng với mọi n ta dùng phương pháp quy nạp toán học. HS lĩnh hội kiến thức +) HĐ2: Hình thành kiến thức. Nội dung phương pháp quy nạp toán học Bước 1: Kiểm tra mệnh đề đúng với n = 1. Bước 2: Giả thiết mệnh đề đúng với một số tự nhiên bất kì n = k ≥ 1 (giả thiết qui nạp), chứng minh mệnh đề đúng với n = k + 1. Kết luận mệnh đề đúng +) HĐ3: Cũng cố Nội dung HĐ3.1 Chứng minh rằng với mọi n ∈ N*, thì:1 + 3 + 5 + … + (2n – 1) = n2 (1) GV phân tích kỹ lại ví dụ 1 trong sgk * Khi n = 1, VT = VP =1. Vậy (1) đúng. * Giả sử mệnh đề đúng với n = k, nghĩa là: 1 + 3 + 5 + ... + (2k – 1) = k2 Ta chứng minh mệnh đề đúng với n = k + 1 tức là:1 + 3 + 5 + ... + (2k – 1)+[2(k+1)-1] = (k+1)2 Thât vậy, từ giả thiết quy nạp ta có:1 + 3 + 5 + ... + (2k – 1)+[2(k+1)-1] = k2 +[2(k+1)-1] = k2 + 2k +1 =(k+1)2 Vậy mệnh đề đúng với mọi n. HS tiếp thu kiến thức HĐ3.2 Chứng minh rằng với mọi n ∈ N*, thì: - GV phát phiếu học tập số 1(HĐ3.2) - GVchia 8 nhóm thảo luận - HS thảo luận nhóm để đưa ra kết quả - GV chọn nhóm 1 báo cáo kết quả hoạt động - Các nhóm còn lại thảo luận, đáng giá kết quả - GV nhận định và kết luận kết quả 2.2. Ví dụ áp dụng (15 phút) +) HĐ1: Tiếp cận HĐ1.1. Chứng minh rằng với mọi n ∈ N*, ta có: chia hết cho 3 (2) Đặt Sn=. Với n=1 thì S1= 93. Giả sử với k1 ta cóSk= Ta phải cm Sk+13. Thật vậy: Sk+1 Hay Sk+1=Sk+. Theo giả thiết qui nạp thì Sk3, ngoài ra 3 nên Sk+13. Vậy Sn3. HS tiếp thu kiến thức +) HĐ2: Hình thành kiến thức. Nếu phải chứng minh mệnh đề là đúng với mọi số tự nhiên n≥ p (p là một số tự nhiên) thì: Bước 1: Kiểm tra mệnh đề đúng với n = p. Bước 2: Giả thiết mệnh đề đúng với một số tự nhiên bất kì n = k ≥ p (giả thiết qui nạp), chứng minh mệnh đề đúng với n = k + 1. +) HĐ3: Cũng cố Nội dung HĐ3.1 Chứng minh rằng với mọi số nguyên dương n ≥ 3 thì: 2n > 2n+1 - GV phát phiếu học tập số 2(HĐ3.1) - GV chia 8 nhóm thảo luận - HS thảo luận nhóm để đưa ra kết quả - GV chọn nhóm 1 báo cáo kết quả hoạt động - Các nhóm còn lại thảo luận, đáng giá kết quả - GV nhận định và kết luận kết quả * Với n=3 ta có: 8>7 => 2n > 2n+1 đúng * Giả thiết mệnh đề đúng với một số tự nhiên bất kì n = k ≥ 3 ta có: 2k > 2k+1 Ta sẽ chứng minh mệnh đề đúng với n = k + 1 là 2k+1 > 2(k+1)+1 Ta thấy 2k+1=2.2k >2(2k+1)=4k+2> 2k+3=2(k+1)+1 Vậy mệnh đề đúng với n ≥ 3. 3. LUYỆN TẬP (6 phút) Nội dung HĐ. Chứng minh rằng với mọi n ∈ N*, ta có: - GV phát phiếu học tập số 3 (HĐ) - GV chia 8 nhóm thảo luận - HS thảo luận nhóm để đưa ra kết quả - GV chọn nhóm 1 báo cáo kết quả hoạt động - Các nhóm còn lại thảo luận, đáng giá kết quả - GV nhận định và kết luận kết quả Câu 1. Trong các mệnh đề sau, mệnh đề nào đúng với mọi số nguyên dương n ≥ 3? A. 2n > 2n+1. B. 2n > 2n. C. 2n > n+1. D. 2n > n. HS suy nghĩ và trả lời GV nhận xét Câu 2. Với mọi số nguyên dương n thì Sn =n3+2n chia hết cho số bao nhiêu? A. 2. B. 3. C. 4. D. 7. HS suy nghĩ và trả lời GV nhận xét, hoàn chỉnh 4. VẬN DỤNG VÀ MỞ RỘNG (1 phút) Nội dung Chứng minh rằng số đường chéo của một đa giác lồi n cạnh là - GV phát phiếu học tập số 4 - GV chia 10 nhóm thảo luận - GV yêu cầu các nhóm về nhà trao đổi, thảo luận - HS tự thảo luận nhóm để đưa ra kết quả IV. Củng cố, dặn dò: 1 phút - Nhắc lại các kiến thức trọng tâm. - Về nhà xem trước bài “DÃY SỐ”. Ngày soạn: 9/12/2018 CHỦ ĐỀ: DÃY SỐ I. Mục tiêu bài học: 1. Về kiến thức: +/ Học sinh nắm được khái niệm dãy số, cách cho dãy số, dãy số tăng, giảm, bị chặn. 2. Về kỹ năng: +/ Nhận biết được dãy hữu hạn, dãy vô hạn, dãy truy hồi. +/Biết cách biểu diễn hình học của dãy số +/Tìm số hạng thứ n của dãy số; số hạng tổng quát; xét tính chất tăng, giảm, bị chặn. 3. Thái độ: +/ Phân tích vấn đề chi tiết, hệ thống rành mạch. +/ Tư duy các vấn đề logic, hệ thống. +/ Nghiêm túc, tích cực, chủ động, độc lập và hợp tác trong hoạt động nhóm +/ Say sưa, hứng thú trong học tập và tìm tòi nghiên cứu liên hệ thực tiễn 4. Các năng lực chính hướng tới sự hình thành và phát triển ở học sinh: - Năng lực hợp tác: Tổ chức nhóm học sinh hợp tác thực hiện các hoạt động. - Năng lực tự học, tự nghiên cứu: Học sinh tự giác tìm tòi, lĩnh hội kiến thức và phương pháp giải quyết bài tập và các tình huống. - Năng lực giải quyết vấn đề: Học sinh biết cách huy động các kiến thức đã học để giải quyết các câu hỏi. Biết cách giải quyết các tình huống trong giờ học. - Năng lực thuyết trình, báo cáo: Phát huy khả năng báo cáo trước tập thể, khả năng thuyết trình. - Năng lực tính toán. II. Chuẩn bị của GV và HS 1. Chuẩn bị của GV: +/ Soạn giáo án +/ Chuẩn bị phương tiện dạy học: Phấn, thước kẻ, máy chiếu... 2.Chuẩn bị của HS: +/ Đọc trước bài +/ Chuẩn bị bảng phụ, bút viết bảng, khăn lau bảng … III. Chuỗi các hoạt động học 1.HOẠT ĐỘNG TIẾP CẬN BÀI HỌC (5 phút) a)Mục tiêu: Tạo tình huống để học sinh tiếp cận đến khái niệm dãy số b) Nội dung,Phương thức tổ chức: + Chuyển giao: Giới thiệu các dãy số quen thuộc: Dãy số tự nhiên, dãy số TN chẵn, TN lẻ. Dãy số trong thực tế:* Bài toán : Đầu năm 2018, một khách hàng có 100 triệu đồng đem gửi Ngân hàng với lãi suất 0,4 % /3 tháng, tỷ lệ lãi suất trên được tính dồn cả gôc + lãi cho mỗi Quý nếu khách hàng không rút tiền ra và lãi suất không đổi trong suốt thời gian gửi . Hỏi Vị khách hàng này sau hai năm thu được số tiền lãi là bao nhiêu? * Theo thể thức của ngân hàng, ta lập được bảng sau A.-Thời điểm B.- Tiền gốc + lãi C.Lãi cộng dồn Đầu Năm 2018 100 000 000 Năm thứ nhất cuối Q 1 104 000 000 4 000 000 Cuối Q2 108 160 000 8 160 000 Cuối Q3 112 486 400 12 486 400 Cuối Q4 116 985 856 16 985 856 Năm thứ hai cuối Q 1 121 665 290 21 665 290 Cuối Q2 126 531 902 26 531 902 Cuối Q3 131 593 178 31 593 178 Cuối Q4 136 856 905 36 856 905 Dãy số Phi – bô - nac - xi:
* DÃY SỐ CÓ LẠ VỚI CHÚNG TA KHÔNG? 2.HOẠT ĐỘNG HÌNH THÀNH KIẾN THỨC 2.1. HTKT1: Định nghĩa( 10 phút) a) Tiếp cận và hình thành kiến thức Hoạt động 2.1.1: - Mục tiêu: Hình thành khái niệm dãy số vô hạn, dãy hữu hạn. - Nội dung, phương thức tổ chức:Giáo viên trình chiếu câu hỏi + Chuyển giao : Cho hàm số . Học sinh thực hiện các nội dung sau: + Nhận xét về tập xác định của hàm số đã cho. + Tính , ..... u(2018), .... + Các số hạng trên thuộc tập nào? + thảo luận: Chỉ định một học sinh bất kì sắp xếp lại theo thứ tự. . Câu hỏi thảo luận: Dãy số là gì? + Đánh giá, nhận xét: kiểm tra sự chính xác. Chốt kiến thức : phát biểu định nghĩa về dãy vô hạn, hữu hạn như (sgk) Ví dụ: + Hãy xác định các số hạng thứ 9, thứ 99 và thứ 999 của dãy số ở bài toán ban đầu. + Gọi một học sinh cho ví dụ về dãy vô hạn ; cho ví dụ về dãy hữu hạn. + Cho dãy số Dãy số:, .... . Số là số hạng thứ mấy của dãy số đã cho; tìm số hạng tổng quát của dãy đó. 2.2. HTKT2: Cách cho dãy số ( 7 phút) a/ HĐ tiếp cận và hình thành kiến thức: Hoạt động 2.2.1: Mục tiêu: Biết cách cho một dãy số ( nhấn mạnh cách cho dãy số bởi công thức số hạng tổng quát và công thức truy hồi ). Chuyển giao: Ở ví dụ trên, nếu biết số hạng tổng quát của một dãy số, ta có tìm được số hạng đầu tiên, thứ hai, .... , hay không? 1.. Dãy số cho bởi công thức số hạng tổng quát Ví dụ: Cho dãy số (un) với a) . Hãy viết dạng khai triển của dãy số Thực hiện: Học sinh viết dạng khai triển: Giới thiệu một vài cách cho dãy số ( như SGK ). 2. Dãy số cho bởi công thức truy hồi. Chuyển giao: Ví dụ: Xét dãy số (un) xác định bởi công thức Tìm số hạng thứ 2 và số hạng thứ 3? CH: + số hạng thứ hai u2 có liên quan như thế nào đến số hạng thứ nhất u1 ? + số hạng thứ ba có liên quan như thế nào đến số hạng thứ hai u2 ? + Nếu muốn tìm số hạng thứ 10 thì phải tìm được số hạng nào? Thực hiện: Học sinh trả lời Đánh giá nhận xét: nhận xét dẫn đến khái niệm dãy truy hồi Củng cố: Học sinh cho ví dụ về dãy truy hôi; giới thiệu dãy Phi bô nat xi. 2.3. HTKT3: Biểu diễn hình học của dãy số (3 phút). Hướng dẫn học sinh xem sách GK. CH: Biểu diễn như thế nào? 2.4. HTKT4: Dãy số tăng, dãy số giảm, dãy số bị chặn (20 phút). 2.4.1.Dãy số tăng, dãy số giảm HĐ 2.4.1 Tiếp cận và hình thành : Mục tiêu: Nắm được định nghĩa về dãy số tăng, giảm, bị chặn; biết cách khảo sát một dãy số ( tăng, giảm, bị chặn ). Nôi dung: Chuyển giao : Cho dãy số (un) với un = n3, so sánh un và un+1. Thực hiện: học sinh tinh. Đánh giá, nhận xét: Giá trị của các số hạng theo thứ tự tăng dần. Chốt kiến thức: Định nghĩa dãy số tăng. Dãy số giảm được định nghĩa tương tụ. Củng cố: Cho ví dụ về một dãy số tăng.; dãy số không tăng, không giảm. VD: CMR: Dãy số (un) với un = 2n-1 là dãy số tăng. Dãy số (un) với un = là dãy số giảm CH: so sánh un và un+1. bằng cách nào? ( Nêu 2 cách thường dùng ). 2. 4.2 Dãy số bị chặn: HĐ 2.4.2 Tiếp cận và hình thành : Nội dung: Chuyển giao: Chứng minh các bất dẳng thức: Thực hiện: Chia hai nhóm thực hiện. Báo cáo: Kiểm tra tính chính xác Đánh giá nhận xét:: Dãy số bị chặn trên; Dãy số bị chặn dưới. Chốt kiến thức: Nêu định nghĩa 2 (SGK). Củng cố: Cho các ví dụ về dãy bị chặn trên; bị chặn dưới; bị chặn. 3. HOẠT ĐỘNG LUYỆN TẬP A. BÀI TẬP TỰ LUẬN ( 15 phút ) HĐ 1: Chuyển giao nhiệm vụ HĐ 2: Thực hiện: Chia nhóm thực hiện HĐ 3: Báo cáo thao luận: Đại diện nhóm trình bày HĐ 4: Đánh giá nhận xét Bài 1: Hãy viết 5 số hạng đầu của dãy số và số hạng thứ 2018 của mỗi dãy (un) cho bởi: a) b) Bài 2: Xét tính tăng, giảm của các dãy số (un) cho bởi: a) b) Bài 3: Xét tính bị chặn trên, bị chặn dưới, bị chặn của các dãy số (un) cho bởi: a) b) c) B. BÀI TẬP TRẮC NGHIỆM ( 10 phút ) Câu 1: Trong các dãy số sau, dãy số nào thõa mãn A. 1;2;4;8;16;36… B. 1;2;8;16;24;54… C. D. ( n=0;1;2….) Câu 2: Cho dãy số (un) xác định bởi: . Ta có u5 bằng: A. 10 B. 1024 C. 2048 D. 4096 Câu 3: Cho dãy số (un) xác định bởi: . Khi đó u50 bằng: A. 1274,5 B. 2548,5 C. 5096,5 D. 2550,5 Câu 4: Cho dãy số (un) xác định bởi: . Khi đó u11 bằng: A. 210.11! B. -210.11! C. 210.1110 D. -210.1110 Câu 5: Cho dãy số . Chọn khẳng định đúng trong các khẳng định sau đây? A. Dãy tăng B. Dãy giảm C. Bị chặn D. Không bị chặn Câu 6: Cho dãy số với . Giá trị của u4 bằng A. B. C. D. Câu 7: Cho dãy số . Chọn khẳng định sai trong các khẳng định sau đây? A. B. Dãy số bị chặn C. là dãy tăng D. dãy số không tăng, không giảm 4. VÂN DỤNG VÀ MỞ RỘNG VÀO THỰC TẾ. A. VÂN DỤNG VÀO THỰC TẾ: 1/. Bài ứng dụng ( 15 phút ) * Bài toán : Một khách hàng có 100 triệu đồng đem gửi Ngân hàng với lãi suất 0,4 % /3 tháng, tỷ lệ lãi suất trên được tính dồn cả gôc + lãi cho mỗi Quý nếu khách hàng không rút tiền ra. Hỏi Vị khách hàng này sau hai năm thu được số tiền lãi là bao nhiêu ? *** Bạn hãy lập công thức số hạng tổng quát cho dãy số trên. B. MỞ RỘNG TÌM TÒI ( 10 phút ) 1. Ứng dụng của dãy số trong giải phương trình nghiệm nguyên Chứng minh rằng phương trình có vô hạn nghiệm nghuyên dương. HD:Xây dựng dãy số sao cho thỏa PT. 2. Dãy Phi bô nat xi và bài toán Lát gạch Có bao nhiêu cách lát sàn nhà hình chữ nhật có kích thước bởi các viên gạch có kích thước . HD: Xây dựng dãy Phi – bô – nac – xi.
TRẮC NGHIỆM Câu 1: Cho dãy số với . Khi đó bằng: A. B. C. D. Câu 2: Cho dãy số có . Khi đó số hạng thứ n+3 là? A. B. C. D. Câu 3: Cho dãy số có công thức tổng quát là thì số hạng thứ n+3 là? A. B. C. D. Câu 4: Cho tổng . Khi đó là bao nhiêu? A. 3 B. 6 C. 1 D. 9 Câu 5: Cho dãy số (un): Ta có u11 bằng A. 36 B. 60 C. 56 D. 44 Câu 6: Cho dãy số . Số là số hạng thứ bao nhiêu? A. 10 B. 9 C. 8 D. 11 Câu 7: Cho dãy số với . Khi đó bằng: A. B. . C. D. Câu 8: Dãy số nào sau đây là dãy tăng: A. B. C. D. Câu 9: Trong các dãy số (un) sau đây, hãy chọn dãy số giảm: A. un = sin n B. un = C. un = D. un = Câu 10: Trong các dãy số (un) sau đây, hãy chọn dãy số bị chặn A. un = B. un = n + C. un = 2n + 1 D. un = Câu 11: Cho dãy số (un) vói un = 3n. Hãy chọn hệ thức đúng: A. B. C. D. Câu 12: Cho dãy số (un), biết un = 3n. Số hạng un + 1 bằng: A. 3n + 1 B. 3n + 3 C. 3n.3 D. 3(n + 1) Câu 13: Cho dãy số (un), biết un = 3n. Số hạng u2n bằng A. 2.3n B. 9n C. 3n + 3 D. 6n Câu 14: Cho dãy số (un), biết un = 3n. Số hạng un - 1 bằng: A. 3n - 1 B. C. 3n - 3 D. 3n - 1 Câu 15: Cho dãy số (un), biết un = 3n. Số hạng u2n - 1 bằng: A. 32.3n - 1 B. 3n.3n - 1 C. 32n - 1 D. 32(n - 1) Câu 16: Hãy cho biết dãy số (un) nằo dưới đây là dãy số tăng, nếu biết công thức số hạng tổng quát un của nó là: A. B. C. D. . Câu 17: Dãy số xác định bởi công thức un = 2n + 1 với mọi n = 0, 1, 2, … chính là: A. Dãy số tự nhiên lẻ B. Dãy 1, 3, 5, 9 13, 17 C. Dãy các số tự nhiên chẵn. D. Dãy gồm các số tự nhiên lẻ và các số tự nhiên chẵn Câu 18: Trong các dãy số sau, dãy số nào thoả mãn: u0 = 1, u1 = 2, un = 3un - 1 - 2un - 2 , n = 2, 3, …? A. 1, 2, 4, 8, 16, 32, … B. 1, 2, 8, 16, 24, 24, 54, … C. Dãy có số hạng tổng quát là un = 2n + 1 với n = 0, 1, 2, … D. Dãy có số hạng tổng quát là un = 2n với n = 0, 1, 2, …
Ngày soạn: 16/12/2018 CHỦ ĐỀ: CẤP SỐ CỘNG I. Mục tiêu của bài
Qua bài học, GV đặt các caau hỏi gợi mở giúp HS phát triển năng lực tự học cũng như năng lực phát hiện và giải quyết vấn đề, ngoài ra hoạt động nhóm sẽ nâng cao năng lực hợp tác giữa HS với nhau. Thêm vào đó một số bài tập sẽ giúp HS phát triển được năng lực vận dụng kiến thức vào cuộc sống. II. Chuẩn bị của giáo viên và học sinh 1. Giáo viên:
2. Học sinh:
III. Chuỗi các hoạt động học 1. GIỚI THIỆU (5’) GV dẫn dắt HS tới kiến thức bài học.
GV đặt vấn đề:
GV nhận xét câu trả lời của HS sau đó đặt câu hỏi và mời một HS trả lời câu hỏi: - Từ những số liệu trên, chúng ta có được một dãy số: 1, 3, 4, 7, 9, 11… Các em có nhận xét gì về dãy số trên? Các số hạng có mối liên hệ nào với nhau? GV nhận xét câu trả lời của HS và nói: 2. NỘI DUNG BÀI HỌC 2.1 Đơn vị kiến thức 1 (20’): Tìm hiểu khái niệm cấp số cộng a) Tiếp cận: H1. Từ ví dụ trên yêu cầu HS chứng minh dãy số sau là một cấp số cộng :1, –3, –7, –11, –15 Đ1. –3 = 1 + (–4); –7 = –3 + (–4); ..... H2. Viết 5 số hạng liên tiếp nữa của CSC đó ? Đ2. –19, –23, –27, –31, –35 b) Hình thành: từ các ví dụ trên GV yêu cầu một HS nêu định nghĩa “cấp số cộng” theo cách hiểu của bản thân? Từ đó GV nhận xét và nêu định nghĩa “cấp số cộng”. I. Định nghĩa Cấp số cộng là một dãy số (hữu hạn hoặc vô hạn), trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với một số không đổi d. Số d đgl công sai của cấp số cộng. Công thức truy hồi: un+1 = un + d ( n N*) c) Củng cố: GV yêu cầu hai HS cho ví dụ về “cấp số công” dựa vào định nghĩa vừa học và nhận xét. - GV mời một HS tìm giá trị của số hạng đầu tiên U1 và công sai d của dãy số trên. GV nhận xét câu trả lời của HS. GV đặt vấn đề dựa trên tình huống đầu tiết dạy và đặt câu hỏi:
HS suy nghĩ trả lời câu hỏi của GV.
GV nhận xét : - GV đặt câu hỏi: Nếu một “cấp số công” có công sai d = 0 thì “cấp số cộng” có dạng như thế nào? HS trả lời: Nếu một “cấp số công” có công sai d = 0 thì “cấp số cộng” đó có dạng: u1, u1, u1,… u1,… GV nhận xét câu trả lời của HS và đưa ra chú ý. Chú ý: Đặc biệt khi công sai d = 0 thì “cấp số công” là một dãy số không đổi. 2.2 Đơn vị kiến thức 2 (20’): Tìm hiểu công thức tính số hạng tổng quát a) Tiếp cận: - GV giới thiệu cho HS biết cấp số cộng đã từng xuất hiện trong chương trình cấp 1 (đó là bảng cửu chương). - GV yêu cầu HS nêu cách tính số hạng thứ 9 trong bảng cửu chương 5 trong trường hợp HS chưa học thuộc bảng cửu chương. (HS trả lời câu hỏi của GV: lấy 5 và cộng thêm với 5 tám lần sẽ ra kết quả). - GV nói: “ việc tính toán một số hạng bất kì trong cấp số cộng cũng tương tự như vậy”. - GV quay lại câu chuyện vào đầu bài để dẫn dắt HS tới việc tính toán một số hạng bất kì trong cấp số cộng.
- GV yêu cầu HS tính số người biết được câu chuyện đó trong ngày thứ 1000. => HS tính số người biết được câu chuyện đó trong ngày thứ 1000. (số người biết chuyện trong ngày thứ 1000 = 1 + 999.2 - GV yêu cầu HS tổng quát cách tính số người biết câu chuyện đó trong ngày thứ n. => HS nêu cách tính số người biết câu chuyện trong ngày thứ n. - GV nhận xét câu trả lời của HS và đi tới cách tính số hạng tổng quát khi biết số hạng đầu và công sai của cấp số cộng. b) Hình thành: II. SỐ HẠNG TỔNG QUÁT - Nếu “cấp số công” (un) có số hạng đầu là u1 và công sai là d thì sống hạng tổng quát un được xác định bởi công thức: un = u1 + (n – 1)d với n 2. c) Củng cố: Dựa vào định lý 1, hãy xác định, trong tình huống đầu bài:
Với 111 tính tương tự
- HS trả lời ta đã có n=58 nên dễ dàng tính được u58 = 115. - GV nhận xét câu VD: Cho CSC (un) với u1 = –5, d = 3. a) Tìm u15. - Yêu cầu HS viết công thức tính u15 ? - u15 = –5 + 14.3 = 37 b) Số 100 là số hạng thứ mấy ? un = 100 = –5 + (n – 1).3 ⇒ n = 36 2.3. Đơn vị kiến thức 3 (10’): Tìm hiểu tính chất của các số hạng a) Tiếp cận (khởi động) - Từ ví dụ trên yêu cầu HS biểu diễn các số hạng u1, u2, u3, u4 lên trục số. Nhận xét vị trí của 3 điểm liền kề.trả lời của HS. u1 u2 u3 u5 u4 -5 1 7 H1. Nhận xét mổi điểm u2, u3, u4 so với hai điểm liền kề bên cạnh. Đ1.Ta có u3 là trung điểm đoạn u2u4 hay H2. Hãy tính và theo và d. Đ2.Ta có và . H3. Tính từ và . Đ3.Suy ra . GV giới thiệu tích chất về các số hạng b) Hình thành: H. Nhận xét đk cần và đủ để 3 số a, b, c là 3 số hạng liên tiếp của một CSC ? Đ. a, b, c là CSC ⇔ III. Tính chất các số hạng của cấp số cộng Định lí 2: với k ≥ 2 c) Củng cố: ví dụ: Ba góc A, B, C của tam giác vuông ABC theo thứ tự lập thành CSC. Tính 3 góc đó. Giải: Giả sử A B C, ta có: Suy ra A = 300; B = 600 và C = 900. 2.4 Đơn vị kiến thức 4 (20’): Tìm hiểu công thức tính tổng của n số hạng đầu của một CSC a) Tiếp cận: yêu cầu HS thảo luận nhóm thực hiện hoạt động 4 SGK/tr96 H1: Viết các số hạng theo thứ tự ngược lại và nhận xét về tổng các số hạng ở mỗi cột. u1 u2 u3 u4 u5 u6 u7 u8 –1 3 7 11 15 19 23 27 27 23 19 15 11 7 3 -1 26 26 26 26 26 26 26 26 H2: Tính tổng và so sánh với .
Khi đó H3: Tổng quát hóa cho . Suy ra H4: Thay vào công thức trên. Vậy b) Hình thành: IV. Tổng n số hạng đầu của một CSC Định lí 3: Chú ý: Công thức trên có thể viết: c) Củng cố: VD: Cho dãy số (un) với un = 3n – 1. a) Chứng minh dãy (un) là CSC. Tìm u1 và d. b) Tính tổng của 50 số hạng đầu. c) Biết Sn = 260. Tìm n. 3. LUYỆN TẬP (8’) Bài tập 3 SGK trang 97: yêu cầu HS hoạt động nhóm và điền vào bảng chuẩn bị sẵn. H1: Yêu cầu HS viết công thức liên hệ giữa các đại lượng u1, un, n, d, Sn. H2: Để xác định các yếu tố còn lại ta cần biết ít nhất mấy yếu tố. Ba trong năm yếu tố u1, un, n, d, Sn. H3: Sử dụng các công thức ở trên hoàn thành dữ liệu trong bảng. 4. VẬN DỤNG VÀ MỞ RỘNG 4.1 Vận dụng vào thực tế (7’): Bài tập 4 SGK trang 97 H1: Chứng tỏ rằng số tiếng chuông từ 0 giờ đến 12 giờ là một CSC. Đ1:Là cấp số cộng có và . H2: Tính tổng .Đ2: 4.2 Mở rộng, tìm tòi (mở rộng, đào sâu, nâng cao,…) (thời gian) |
Ngày soạn: 23/12/2018 CHỦ ĐỀ: CẤP SỐ NHÂN
I. Mục tiêu của bài
1. Kiến thức:
- Biết khái niệm cấp số nhân, công thức số hạng tổng quát, tính chất các số hạng và công thức tính tổng n số hạng đầu tiên.
2. Kỹ năng:
- Biết sử dụng tính chất và các công thức vào giải bài toán: Tìm các yếu tố còn lại khi biết ba trong năm yếu tố
3. Thái độ:
- Rèn luyện cho học sinh có thái độ học tập nghiêm túc, hứng thú với các con số.
4. Định hướng phát triển năng lực:
- Giúp học sinh hình thành khả năng hoạt động nhóm, phát hiện nhanh, có định hướng trong việc giải quyết các bài toán, vận dụng kiến thức vào cuộc sống.
II. Chuẩn bị của giáo viên và học sinh
1. Giáo viên:
- Chuẩn bị hệ thống câu hỏi, phiếu học tập, hình ảnh trực quan, dụng cụ dạy học cần thiết.
2. Học sinh:
- Nắm vững kiến thức bài dãy số và cấp số cộng; xem trước bài mới, chuẩn bị dụng cụ học tập.
III. Chuỗi các hoạt động học
1. GIỚI THIỆU (10 phút)
Yêu cầu học sinh quan sát hình vẽ bên dưới và trả lời câu hỏi
Câu 1: Hình vẽ trên là hình ảnh về cái gì? Trong số các em ai biết chơi trò chơi này?
Câu 2: Hãy cho biết cờ vua có nguồn gốc từ đâu? Ai là người phát minh ra cờ vua?
Câu 3: Trên bàn cờ gồm có mấy ô số? Cờ vua có phải là một trò chơi may rủi không?
Câu 4: Cờ vua gắn liền với câu chuyện giữa nhà vua Ấn độ và nhà thông thái có tên là Sêram ở nước đó, liên quan đến hạt thóc và bàn cờ. Một truyền thuyết rất thú vị. Có bạn nào biết về câu chuyện này không?
Nhìn vào bàn cờ chúng ta thấy rất đơn giản nhưng ít ai có thể chơi tốt bộ môn này, nó đòi hỏi có chiến thuật cao. Đó là một ví dụ điển hình của quy luật cấp số nhân trong bộ môn toán trong thực tế. Muốn biết những điều thú vị về bàn cờ vua và câu chuyện ở trên, chúng ta cùng tìm hiểu về nội dung bài học “ Cấp số nhân” trong tiết học hôm nay.
2. NỘI DUNG BÀI HỌC
I- Định nghĩa: (15 phút)
HĐ1: Tiếp cận định nghĩa “Cấp số nhân” | Gợi ý |
Ô số 1 có 1 hạt lúa Ô số 2 có 1.2 = 2 hạt lúa Ô số 3 có 2.2 = 4 hạt lúa Ô số 4 có hạt lúa ..... Ô số 64 sẽ có hạt lúa. | - Giáo viên kể tóm tắt câu chuyện giữa nhà thông thái và nhà vua Ấn độ để học sinh tiếp cận định nghĩa: Nhà thông thái Sêram ở ấn độ đã tìm ra trò chơi cờ vua, nhà vua rất thích thú với trò chơi trí tuệ này và quyết định thưởng cho nhà thông thái theo yêu cầu mà ông mong muốn. Nhà thông thái chỉ yêu cầu nhà vua:“Thần chỉ xin bệ hạ thưởng cho bằng những hạt lúa”. Nhà vua nghe thấy vậy, liền cười ha hả, hỏi: nhà ngươi cần bao nhiêu lúa. Trẫm chấp nhận đáp ứng yêu cầu của nhà ngươi! Viên quan liền tâu: Bẩm, trên bàn cờ tướng có 64 ô vuông. Bây giờ xin bệ hạ sai người, trong ô thứ nhất bỏ vào 1 hạt lúa. Ô thứ hai bỏ vào 2 hạt, ô thứ ba bỏ vào 4 hạt. Ô thứ tư bỏ vào 8 hạt, cứ như vậy đến ô cuối cùng. (Tức là ô sau sẽ gấp đôi ô trước) - Yêu cầu học sinh dự đoán số hạt lúa, mà nhà thông thái muốn được thưởng là bao nhiêu. |
HĐ2: Hình thành định nghĩa “Cấp số nhân” | Gợi ý |
Định nghĩa: Cấp số nhân là một dãy số (hữu hạn hoặc vô hạn), trong đó kể từ số hạng thứ hai trở đi, mỗi số hạng đều là tích của số hạng đứng ngay trước nó với một số không đổi q (q gọi là công bội). - Nếu (un) là cấp số nhân với công bội q thì ta có công thức: | - Như vậy, khi sắp xếp các con số ở mỗi ô lại ta được một dãy: hay
- Những dãy số có quy luật số đứng sau luôn bằng số đứng trước nhân với một số không đổi thì gọi là cấp số nhân. - Số không đổi đó được gọi là công bội. - Từ dãy số ở trên hãy tìm ra công thức cho số hạng thứ khi biết số hạng ? |
HĐ3: Củng cố định nghĩa | Gợi ý |
Ví dụ 1: Chứng minh dãy số sau là một cấp số nhân: Chỉ ra công bội của nó? *Đặc biệt: (SGK) | - Phân tích số đứng sau thành tích của số đứng liền trước nó với một số nào đó. - Rút ra quy luật. - Công bội - Giả sử , ta được cấp số nhân có dạng ntn? - Tương tự đối với trường hợp |
II- Số hạng tổng quát: (13 phút)
HĐ1: Tiếp cận công thức số hạng tổng quát | Gợi ý |
...................
| - Cho CSN với số hạng đầu là , công bội q. Hãy tính các số hạng theo và q? |
HĐ2: Hình thành công thức số hạng tổng quát | Gợi ý |
Định lý 1: Nếu cấp số nhân có số hạng đầu là và công bội là q thì số hạng tổng quát được xác định bởi công thức: | - Từ hoạt động trên, hãy dự đoán công thức tính số hạng bất kỳ theo và q? |
HĐ3: Củng cố công thức | Gợi ý |
Ví dụ 2: Cho CSN , với a) Tính . b) Hỏi là số hạng thứ mấy? | - Câu a, áp dụng công thức số hạng tổng quát. - Câu b, ta cần tìm n. - Hãy viết công thức số hạng tổng quát và từ đó rút ra n. |
III- Tính chất các số hạng của cấp số nhân: (10 phút)
HĐ1: Tiếp cận tính chất | Gợi ý |
Cho cấp số nhân với a) Hãy viết ra 6 số hạng đầu của nó. b) Tính và so sánh với tích , với tích | - Hướng dẫn học sinh thực hiện hoạt động 3 SGK. a) b) = , = . |
HĐ2: Hình thành tính chất | Gợi ý |
Định lý 2: Trong một cấp số nhân, bình phương của mỗi số hạng đều là tích của hai số hạng đứng kề với nó | - Từ hoạt động ở trên rút ra kết luận. |
HĐ3: Củng cố tính chất | Gợi ý |
Ví dụ 3: Cho cấp số nhân có . Hãy tìm và ? | Áp dụng công thức trên |
IV- Tổng n số hạng đầu của một cấp số nhân: (12 phút)
HĐ1: Tiếp cận công thức | Gợi ý |
Cho CSN , công bội . Đặt . a) CMR: (1) và (2) b) Từ (1) và (2) hãy CMR: | - Hướng dẫn học sinh thực hiện hoạt động theo nhóm. |
HĐ2: Hình thành công thức | Gợi ý |
Định lí 3: Cho cấp số nhânvới công bội . Đặt . Khi đó: | - Từ hoạt động trên rút ra công thức của định lý 3. - Phát biểu nội dung định lý. |
HĐ3: Củng cố công thức | Gợi ý |
Ví dụ 4: Cho CSN , với . Tính tổng của 10 số hạng đầu tiên. | Áp dụng công thức của định lý 3. |
3. HOẠT ĐỘNG LUYỆN TẬP (15 phút)
* Hoạt động 1: Học sinh thực hành theo nhóm và trả lời trên phiếu học tập.
PHIẾU HỌC TẬP SỐ 1
Câu 1: Hãy so sánh sự giống nhau và khác nhau giữa cấp số cộng và cấp số nhân. Cho ví dụ cụ thể về mỗi trường hợp.
Câu 2: Hệ thống lại các công thức trong bài.
PHIẾU HỌC TẬP SỐ 2
Cho cấp số nhân với 5 số hạng đầu là: -1, 3, -9, 27, -81.
a) Tìm công bội q của CSN?
b) Tìm số hạng tiếp theo của CSN?
PHIẾU HỌC TẬP SỐ 3
Xét tính Đúng - Sai của những khẳng định sau:
a) Ta có thể tính được một số hạng bất kỳ khi biết và q của một CSN?
b) Ta có thể tìm được công bội q khi biết và một số hạng bất kỳ của một CSN?
c) ?
* Hoạt động 2: Học sinh thực hành cá nhân.
Câu 1: Cho cấp số nhân với số hạng đầu là và . Chọn đáp án đúng.
A. . B. . C. . D..
Câu 2: Tổng có kết quả là bao nhiêu?
A. -21. B. . C. . D. 11.
Câu 3: Năm số hạng đầu của cấp số nhân có và là dãy số nào sau đây?
A. 2, 4, 8, 16, 32. B. 2, -4, 8, -16, 32.
C. 2, 4, -8, -16, 32. D. Không tồn tại.
Câu 4: Cho cấp số nhân có . Khi đó, kết quả nào đúng?
A. . B. C. D.
4. VẬN DỤNG VÀ MỞ RỘNG
4.1.Vận dụng vào thực tế: (10 phút)
Hoạt động 1: Quay trở lại câu chuyện về hạt thóc ở trên, chúng ta hãy cùng áp dụng các công thức vừa học để tính ra số lượng thóc mà nhà vua phải thưởng cho nhà thông thái và khối lượng của nó.
Số hạt thóc là tổng của 64 số hạng đầu của cấp số nhân có :
.
Giả sử 1000 hạt thóc nặng 20gam, thì khối lượng thóc là 369 tỷ tấn.
Như vậy là nhà vua đã nhầm khi nghĩ là mình thừa sức để thưởng cho nhà thông thái Sêram. Trong khi ngày nay, toàn thế giới chỉ sản xuất được khoảng hơn 2 tỷ tấn lương thực mỗi năm. Nếu đem rải đều số thóc này lên bề mặt trái đất thì sẽ được một lớp thóc dày 9mm. Nhà vua sẽ không thể có được số thóc khổng lồ như vậy.
Qua đây, ta thấy rằng đôi khi có những việc thật nhỏ nhưng nếu kết hợp lại thì có thể tạo nên sức mạnh vô cùng to lớn. Và qua đó cũng cho ta một bài học rằng, đừng bao giờ xem thường những điều tưởng chừng nhỏ nhoi ấy.
Hoạt động 2: (Bài toán thực tế) Một người đi làm với mức lương khởi điểm là 3 triệu đồng một tháng. Cứ sau mỗi tháng, lương người đó lại tăng thêm 5% trên một tháng. Tính tổng số tiền lương người đó nhận được sau một năm đi làm?
Giáo viên hướng dẫn và yêu cầu học sinh về nhà tìm đáp án, kiểm tra kết quả trong tiết sau.
4.2. Mở rộng, tìm tòi: (5 phút)
Ngoài các ứng dụng trong thực tế, cấp số nhân còn được sử dụng để tích hợp liên môn với các bộ môn như Địa lí, Sinh học, Vật lý....
Giáo viên hướng dẫn học sinh giải một bài toán sinh học nhờ vào áp dụng các công thức của cấp số nhân.
Bài toán: Tế bào E.Coli trong điều kiện nuôi cấy thích hợp cứ 20 phút lại phân đôi một lần.
a) Hỏi một tế bào sau mười lần phân chia sẽ thành bao nhiêu tế bào?
b) Nếu có tế bào thì sau hai giờ sẽ phân chia thành bao nhiêu tế bào?
-------------------------------------------
Ngày soạn: 30/12/2018 ÔN TẬP CHUYÊN ĐỀ III
(Đại số và Giải tích 11)
Phân phối thời gian | Tiến trình dạy học | |
Tiết 1 | Hoạt động khởi động | |
Hoạt động hình thành kiến thức Hoạt động luyện tập | KT1: Phương pháp quy nạp toán học | |
KT2: Dãy số | ||
Tiết 2 | KT3: Cấp số cộng – Cấp số nhân | |
Hoạt động luyện tập Hoạt động vận dụng, tìm tòi, mở rộng |
II. KẾ HOẠCH DẠY HỌC
1. Mục tiêu bài học
a. Kiến thức
- Hệ thống hóa các kiến thức mà các em đã được học trong chương ba gồm các vấn đề: Phương pháp quy nạp toán học, dãy số, cấp số cộng, cấp số nhân.
b. Về kĩ năng
- Áp dụng các công thức để giải bài tập
c. Thái độ
- Tích cực, chủ động và hợp tác trong hoạt động nhóm.
- Say mê hứng thú trong học tập và tìm tòi nghiên cứu liên hệ thực tiễn.
d. Các năng lực chính hướng tới sự hình thành và phát triển ở học sinh
- Năng lực hợp tác: Tổ chức nhóm học sinh hợp tác thực hiện các hoạt động.
- Năng lực tự học, tự nghiên cứu: Học sinh tự giác tìm tòi, lĩnh hội kiến thức và phương pháp giải quyết bài tập và các tình huống.
- Năng lực giải quyết vấn đề: Học sinh biết cách huy động các kiến thức đã học để giải quyết các câu hỏi. Biết cách giải quyết các tình huống trong giờ học.
- Năng lực thuyết trình, báo cáo: Phát huy khả năng báo cáo trước tập thể, khả năng thuyết trình.
2. Nhiệm vụ của giáo viên và học sinh
+ Giáo viên
- Thiết kế hoạt động học tập hợp tác cho học sinh tương ứng với các nhiệm vụ cơ bản của bài học.
- Tổ chức, hướng dẫn học sinh thảo luận, kết luận vấn đề.
+ Học sinh
- Mỗi học sinh trả lời ý kiến riêng. Mỗi nhóm trả lời kết luận của nhóm sau khi đã thảo luận và thống nhất.
- Mỗi cá nhân hiểu và trình bày được kết luận của nhóm bằng cách tự học hoặc nhờ bạn trong nhóm hướng dẫn.
- Mỗi người có trách nhiệm hướng dẫn lại cho bạn khi bạn có nhu cầu học tập.
3. Phương pháp dạy học
- Phương pháp dạy học nêu vấn đề và dạy học hợp tác.
4. Phương tiện dạy học
- Máy chiếu, sử dụng các phần mềm dạy học để tăng tính trực quan cho bài giảng.
5. Tiến trình dạy học
A. HOẠT ĐỘNG KHỞI ĐỘNG
* Mục tiêu:
+ Tạo sự chú ý cho học sinh để vào bài mới.
+ Tạo tình huống để học sinh tiếp cận với những kỹ năng giải bài tập về “phương pháp quy nạp toán học, Dãy sỗ, Cấp số cộng và Cấp số nhân”.
* Nội dung, phương thức tổ chức:
+ Chuyển giao:
L1. Quan sát các hình ảnh (máy chiếu)
L2. Lớp chia thành các nhóm (nhóm có đủ các đối tượng học sinh, không chia theo lực học) và tìm câu trả lời cho các câu hỏi H1, H2, H3. Các nhóm viết câu trả lời vào bảng phụ.
H1. Theo em hình 1, hình 2 có áp dụng được phương pháp quy nạp toán học không?
Hình 1 | Hình 2 |
Hình 3 | Hình 4 |
H2. Theo em hình nào là dãy số, cấp số cộng, cấp số nhân? |
H3. Em có thể đưa ra thêm một số ví dụ về những dãy số, cấp số cộng, cấp số nhân?
+ Thực hiện
- Các nhóm thảo luận đưa ra các phương án trả lời cho các câu hỏi H1, H2, H3. Viết kết quả vào bảng phụ.
- Giáo viên quan sát, theo dõi các nhóm. Giải thích câu hỏi nếu các nhóm không hiểu nội dung các câu hỏi.
+ Báo cáo, thảo luận
- Các nhóm HS treo bảng phụ viết câu trả lời cho các câu hỏi.
- HS quan sát các phương án trả lời của các nhóm bạn.
- HS đặt câu hỏi cho các nhóm bạn để hiểu hơn về câu trả lời.
- GV quan sát, lắng nghe, ghi chép.
+ Đánh giá, nhận xét, tổng hợp:
- GV nhận xét thái độ làm việc, phương án trả lời của các nhóm, ghi nhận và tuyên dương nhóm có câu trả lời tốt nhất. Động viên các nhóm còn lại tích cực, cố gắng hơn trong các hoạt động học tiếp theo.
- Dự kiến các câu trả lời:
TL1. Hình 1 và Hình 2 áp dụng phương pháp quy nạp toán học.
TL2. Hình 3 là cấp số nhân, hình 4 là cấp số công, dãy số
* Sản phẩm:
+ Các phương án giải quyết được ba câu hỏi đặt ra ban đầu.
B. HOẠT ĐỘNG HÌNH THÀNH KIẾN THỨC, LUYỆN TẬP
* Mục tiêu: Giúp học sinh củng cố kiến thức và rèn luyện cho học sinh kĩ năng giải bài tập.
* Nội dung, phương thức tổ chức:
+ Chuyển giao:
L1. HS nhắc lại kiến thức.
L2. Học sinh hoạt động cá nhân, trả lời các câu hỏi và giải các bài tập.
1. Phương pháp quy nạp toán học:
Để chứng minh mệnh đề chứa biến A(n) là mệnh đề đúng với mọi số nguyên dương n (n ∈N*), ta làm như sau:
Bước 1: Kiểm tra rằng mệnh đề đúng với
Bước 2: Giả sử mệnh đề đúng với số tự nhiên bất kì (gọi là giả thiết quy nạp)
Bước 3: Chứng minh rằng mệnh đề cũng đúng với
Bài tập 1: Chứng minh 1+3+5+....+
2. Dãy số:
- Định nghĩa: dãy số Một hàm số u xác định trên tập các số nguyên dương N * được gọi là một dãy số vô hạn (gọi tắt là dãy số).
Ký hiệu
Một hàm số u xác định trên tập M = {1,2,3,...,m}, được gọi là một dãy số hữu hạn. Kí hiệu
- Cách cho một dãy số:
Dãy số cho bằng công thức của số hạng tổng quát;
Dãy số cho bằng phương pháp mô tả;
Dãy số cho bằng phương pháp truy hồi.
- Dãy số tăng, dãy số giảm:
Định nghĩa: dãy sốlà dãy số tăng nếu ,
dãy sốlà dãy số giảm nếu ,
Phương pháp khảo sát: Xét hiệu (H>0 dãy số tăng, H<0 dãy số giảm)
Xét tỉ số (T>1 dãy số tăng, T<1 dãy số giảm)
Dự đoán tính tăng, giảm của dãy số và chứng minh bằng phương pháp quy nạp.
- Dãy số bị chặn:
Dãy số được gọi là bị chặn trên nếu tồn tại số M sao cho ,
Dãy số được gọi là bị chặn trên nếu tồn tại số m sao cho ,
Dãy số được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới tức là tồn tại số m, M sao cho:
Bài tập 2: Cho dãy số xác định bởi công thức
A, chứng minh dãy số bị chặn.
B, khảo sát tính tăng, giảm của dãy số.
3. Cấp số cộng – Cấp số nhân
Cấp số cộng | Cấp số nhân | |
Định Nghĩa | ||
Số hạng tổng quát | ||
Tính chất các số hạng | ||
Tổng N số hạng đầu |
Bài tập 3: Tìm ba số hạng liên tiếp của một cấp số cộng biết tổng của chúng bằng 15 và tổng bình phương của chúng bằng 83.
Bài tập 4: Gọi là tổng của n số hạng đầu của dãy số Biết , chứng minh là cấp số cộng.
Bài tập 5: Cho cấp số nhân biết
a) Tìm số hạng đầu và cộng bội q của cấp số nhân.
b) Tính tổng 10 số hạng đầu của cấp số nhân.
* Thực hiện:
- Học sinh làm việc cá nhân và lên bảng giải các bài tập.
- Giáo viên theo dõi, đảm bảo tất cả học sinh đều tự giác làm việc.
* Báo cáo, thảo luận:
- GV đưa ra đáp án cho từng bài tập, các nhóm thống kê số học sinh làm đúng từng bài.
- GV yêu cầu học sinh trình bày cách làm cụ thể cho từng bài.
- GV nhận xét và lựa chọn cách làm nhanh nhất cho từng bài tập.
* Sản phẩm:
- Kết quả cho từng bài tập.
C. HOẠT ĐỘNG VẬN DỤNG, TÌM TÒI, MỞ RỘNG
* Câu hỏi trắc nghiêm:
Câu hỏi 1: Chọn khẳng định Đúng trong các khẳng định: Nếu a,b,c lập thành CSC (khác không)
A. Nghịch đảo của chúng cũng lập thành một CSC B. Bình Phương của chúng cũng lập thành CSC
C. c,b,a theo thứ tự đó cúng lập thành CSC D. Tất cả các khẳng định trên đều sai
Câu hỏi 2: Chọn khẳng định Sai trong các khẳng định: Nếu a,b,c lập thành CSN (khác không)
A. Nghịch đảo của chúng cũng lập thành một CSN B. Bình Phương của chúng cũng lập thành CSN
C. c,b,a theo thứ tự đó cúng lập thành CSC D. Tất cả các khẳng định trên đều sai
Câu hỏi 3: Trong các dãy số sau, dãy số nào thỏa mãn
A. 1;2;4;8;16;36….. B.1;2;8;16;24;54… C. D. ( n=0;1;2….)
Câu hỏi 4: Cho dãy số có .Khi đó số hạng thứ n+3 là?
A. B. C. D.
Câu hỏi 5: Cho dãy số có công thức tổng quát là thì số hạng thứ n+3 là?
A. B. C. D.
Câu hỏi 6: Cho dãy số . Số hạng tổng quát của dãy số trên là?
A. B. C. D.
Câu hỏi 7: Tính tổng . Khi đó công thức của S(n) là?
A. B. C. D.
Câu hỏi 8: Trong các dãy số sau, dãy số nào là CSN.
Câu hỏi 9: Xác định x để 3 số 2x-1;x; 2x+1 lập thành CSN?
A. B. C. D. Không có giá trị nào của x
Câu hỏi 9: Cho CSN có . Tìm q và số hạng đầu tiên của CSN?
A. B. C. D.
* Bài tập mở rộng:
Hiệu ứng domino Khi xếp các quân cờ domino đứng cạnh nhau với khoảng cách giữa hai quân cờ không quá xa, ta có thể đẩy đổ một quân cờ domino đầu tiên, quân cờ đó sẽ đổ vào quân cờ đứng cạnh khiến nó đổ theo, quá trình này tiếp diễn đến khi toàn bộ loạt quân cờ domino đều đổ. Các thay đổi đối với những quân cờ là giống nhau, vì vậy chúng tạo ra một chuỗi thay đổi tuyến tính, điều này có được khi ta coi hệ quân cờ domino là độc lập và sự thay đổi của hệ chỉ gây ra bởi tác động tới quân cờ đầu tiên, điều này khác với hiệu ứng cánh bướm khi thay đổi của hệ còn phụ thuộc nhiều điều kiện khác và vì thế chúng là phi tuyến tính.
Trong hình vẽ trên, ta quy ước:
Nhìn vào hình vẽ trên ta nhận thấy:
Khái quát, nếu n là số tự nhiên khác 0, gọi f(n) là số đôi thỏ có ở tháng thứ n, ta có:
Do đó với n > 3 ta được: f(n) = f(n-1) + Số đôi thỏ ở tháng thứ n-2.
Điều đó có thể được giải thích như sau: Các đôi thỏ sinh ra ở tháng n -1 không thể sinh con ở tháng thứ n, và ở tháng này đôi thỏ tháng thứ n - 2 sinh ra một đôi thỏ con nên số đôi thỏ được sinh ra ở tháng thứ n chính là giá trị của f(n - 2).
* Tìm hiểu thêm về lịch sử toán học
Những nhà toán học đã đặt nên móng cho sự phát triển và Phương pháp quy nạp toán học, dãy số, cấp số cộng – cấp số nhân
Fermat (1601-1665) | Fibonacci (1170-1250) | H.von Koch (1879-1924) |
----- HẾT -----