Đề cương ôn tập hình học 8 lên 9 trong hè

Đề cương ôn tập hình học 8 lên 9 trong hè

4.5/5

Tác giả: Thầy Tùng

Đăng ngày: 22 Aug 2022

Lưu về Facebook:
Hình minh họa Đề cương ôn tập hình học 8 lên 9 trong hè

Công thức toán học không thể tải, để xem trọn bộ tài liệu hoặc in ra làm bài tập, hãy tải file word về máy bạn nhé

HÌNH HỌC 8

Bài 1: Cho hình bình hành ABCD có và . Gọi E, F theo thứ tự là trung đIểm của BC và AD.

a) Tứ giác là hình gì?

b) Tứ giác là hình gì? Vì sao ?

c) Tính số đo của góc .

Bài 2: Cho . Gọi M, N lần lượt là trung điểm của BC, AC. Gọi H là điểm đối xứng của N qua M.

a) Chứng minh tứ giác và là hình bình hành.

b) thỏa mãn điều kiện gì thì tứ giác là hình chữ nhật.

Bài 3: Cho tứ giác. Gọi O là giao điểm của 2 đường chéo (không vuông góc), I và K lần lượt là trung điểm của BC và CD. Gọi M và N theo thứ tự là điểm đối xứng của điểm O qua tâm I và K.

a) Chứng minh rằng tứ giác là hình bình hành.

b) Với điều kiện nào của hai đường chéo AC và BD thì tứ giác là hình chữ nhật.

c) Chứng minh 3 điểm M, C, N thẳng hàng.

Bài 4: Cho hình bình hành . Gọi E và F lần lượt là trung điểm của AD và BC. Đường chéo AC cắt các đoạn thẳng BE và DF theo thứ tự tại P và Q.

a) Chứng minh tứ giác là hình bình hành.

b) Chứng minh

c) Gọi R là trung điểm của BP. Chứng minh tứ giác là hình bình hành.

Bài 5: Cho tứ giác . Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA.

a) Tứ giác là hình gì? Vì sao?

b) Tìm điều kiện của tứ giác để tứ giác là hình vuông?

c) Với điều kiện câu b) hãy tính tỉ số diện tích của tứ giác và

Bài 6: Cho, các đường cao BH và CK cắt nhau tại E. Qua B kẻ đường thẳng vuông góc với AB. Qua C kẻ đường thẳng vuông góc với AC. Hai đường thẳng và cắt nhau tại D.

a) Chứng minh tứ giác là hình bình hành.

b) Gọi M là trung điểm của BC. Chứng minh M cũng là trung điểm của ED.

c) phải thỏa mãn điều kiện gì thì DE đi qua A.

Bài 7: Cho hình thang cân (AB//CD), E là trung điểm của AB.

a) Chứng minh cân

b) Gọi I, K, M theo thứ tự là trung điểm của BC, CD, DA. Tứ giác là hình gì? Vì sao?

c) Tính biết EK = 4, IM = 6.

Bài 8: Cho hình bình hành . Gọi E, F lần lượt là trung điểm của AB và CD.

a) Tứ giác là hình gì? Vì sao?

b) Chứng minh 3 đường thẳng AC, BD, EF đồng quy.

c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.

d) Tính khi biết AC = a, BC = b.

Bài 9: Cho hình thang (AB//CD) , một đường thẳng song song với 2 đáy, cắt các cạnh AD, BC ở M và N sao cho .

a) Tính tỉ số

b) Cho AB = 8cm, CD = 17cm. Tính MN?

Bài 10: Cho hình thang (AB//CD). M là trung điểm của CD. Gọi I là giao điểm của AM và BD, gọi K là giao điểm của BM và AC.

a) Chứng minh IK // AB

b) Đường thẳng IK cắt AD, BC theo thứ tự ở E và F. Chứng minh:

Bài 11: Tam giác ABC có AB = 6cm, AC = 12cm, BC = 9cm. Gọi I là giao điểm của các đường phân giác , G là trọng tâm của tam giác.

a) Chứng minh: IG//BC

b) Tính độ dài IG

Bài 12: Cho hình thoi ABCD, góc A bằng 600. Qua C kẻ đường thẳng d cắt các tia đối của tia BA và DA theo thứ tự E, F.Chứng minh:

a)

b)

c) (I là giao điểm của DE và BF)

Bài 13: Cho tam giác ABC và các đường cao BD, CE.

a) Chứng minh:

b) Tính biết

Bài 14: Cho tam giác ABC vuông ở A, đường cao AH, BC = 20cm, AH = 8cm. Gọi D là hình chiếu của H trên AC, E là hình chiếu của H trên AB.

a) Chứng minh

b) Tính diện tích tam giác ADE

Bài 15: Cho tam giác ABC vuông ở A, AB = 15cm, AC = 20cm, đường phân giác BD.

a) Tính độ dài AD?

b) Gọi H là hình chiếu của A trên BC. Tính độ dài AH, HB?

c) Chứng minh tam giác AID là tam giác cân với I là giao điểm của AH và BD

Bài 16: Tam giác ABC cân tại A, BC = 120cm, AB = 100cm. Các đường cao AD và BE gặp nhau ở H.

a) Tìm các tam giác đồng dạng với tam giác .

b) Tính độ dài HD, BH

c) Tính độ dài HE

Bài 17: Cho tam giác ABC, các đường cao BD, CE cắt nhau ở H. Gọi K là hình chiếu của H trên BC.Chứng minh rằng:

a)

b)

Bài 18: Cho hình thang cân (MN //PQ, MN < PQ), NP = 15cm, đường cao , .

a) Tính IP.

b) Chứng minh:

c) Tính diện tích hình thang

d) Gọi E là trung điểm của PQ. Đường thẳng vuông góc với EN tại N cắt đường thẳng PQ tại K. Chứng minh: KN2 = KP . KQ

Bài 19: Cho tam giác ABC vuông tạo A có AB = 15cm, AC = 20cm, đường cao AH.

a) Chứng minh:

b) Tính BC, AH.

c) Gọi D là điểm đối xứng với B qua H. Vẽ hình bình hành ADCE. Tứ giác ABCE là hình gì? Tại sao?

d) Tính AE.

e) Tính diện tích tứ giác .

Bài 20: Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Từ B kẻ tia , tia Bx cắt tia AH tại K.

a) Tứ giác là hình gì? Tại sao?

b) Chứng minh: ΔABK đồng dạng với ΔCHA. Từ đó suy ra:

c) Chứng minh:

d) Giả sử BH = 9cm, HC = 16cm. Tính AB, AH.

Bài 21: Cho tam giác ABC có ba góc nhọn. Đường cao AF, BE cắt nhau tại H. Từ A kẻ tia Ax vuông góc với AC, từ B kẻ tia By vuông góc với BC. Tia Ax và By cắt nhau tại K.

a) Tứ giác AHBK là hình gì? Tại sao?

b) Chứng minh: ΔHAE đồng dạng với ΔHBF.

c) Chứng minh:

d) ΔABC cần thêm điều kiện gì để tứ giác là hình thoi.

Bài 22: Cho tam giác ABC, AB = 4cm, AC = 5cm. Từ trung điểm M của AB vẽ một tia Mx cắt AC tại N sao cho

a) Chứng minh:

b) Tính NC.

c) Từ C kẻ một đường thẳng song song với AB cắt MN tại K. Tính tỉ số .

Bài 23: Cho ΔABC có AB = 4cm, AC = 5cm, BC = 6cm. Trên tia đối của tia AB lấy điểm D sao cho AD = 5cm.

a) Chứng minh: ΔABC đồng dạng với ΔCBD.

b) Tính CD.

c) Chứng minh:

Bài 24: Cho tam giác vuông ABC ( ), đường cao AH. Biết BH = 4cm, CH = 9cm.

a) Chứng minh:

b) Tính AB, AC.

c) Đường phân giác BD cắt AH tại E (D ∈ AC). Tínhvà chứng minh: Bài 25: Cho hình bình hành ABCD. Trên cạnh BC lấy điểm F. Tia AF cắt BD và DC lần lượt ở E và G. Chứng minh:

a) ;

b)

c) không đổi khi F thay đổi trên cạnh BC.

Bài 26: Cho ΔABC, vẽ đường thẳng song song với BC cắt AB ở D và cắt AC ở E. Qua C kẻ tia Cx song song với AB cắt DE ở G.

a) Chứng minh:

b) Chứng minh:

c) Gọi H là giao điểm của AC và BG. Chứng minh:

Bài 27: Cho cân tại A ( ). Các đường cao AD và CE cắt nhau tại H.

a) Chứng minh:

b) Chứng minh: Từ đó suy ra:

c) Cho AB = 10cm, AE = 8cm. Tính EC, HC.

Bài 28: Quan sát lăng trụ đứng tam giác (hình 1) rồi điền số thích hợp vào ô trống trong bảng sau:

a

h

b

c

a (cm)

6

10

b (cm)

3

c (cm)

5

7

h (cm)

8

Chu vi đáy (cm)

22

Sxq (cm2)

88

Bài 29: Hình lăng trụ đứng có hai đáy ABC và là các tam giác vuông tại A và A’ (hình 2).

Tính Sxq và thể tích của hình lăng trụ.

Biết: AB = 9cm, BC = 15cm, AA’ = 10cm.