MỤC LỤC
Tính nhanh:
\(\Large E = \dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\)
Đáp án: \(\Large E = .....\)
Lời giải chi tiết:
Ta có:
\(\Large E = \dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\)
\(\Large 3\times E = 3\times(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729})\)
\(\Large 3\times E= 1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\)
\(\Large 3\times E-E= (1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243})-( \dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729})\)
\(\Large 2\times E= 1-\dfrac{1}{729}\)
\(\Large 2\times E=\dfrac{728}{729}\)
\(\Large E=\dfrac{728}{729}:2=\dfrac{364}{729}\)
Xem thêm các bài tiếp theo bên dưới