Công thức toán học không thể tải, để xem trọn bộ tài liệu hoặc in ra làm bài tập, hãy tải file word về máy bạn nhé
SỞ GD&ĐT VĨNH PHÚC
| KỲ THI CHỌN HSG LỚP 10 THPT NĂM HỌC 2012-2013 ĐỀ THI MÔN: TOÁN (Dành cho học sinh THPT không chuyên) Thời gian làm bài: 180 phút, không kể thời gian phát đề |
Câu 1.
Câu 2. Giải hệ phương trình:
Câu 3. Cho là độ dài ba cạnh của một tam giác không nhọn. Chứng minh rằng
Câu 4.
.
Tìm tọa độ các đỉnh A, B, C, biết rằng bán kính đường tròn ngoại tiếp tam giác ABC bằng và đỉnh A có hoành độ âm.
Câu 5.
Cho tứ giác lồi ABCD và một điểm M nằm bên trong tứ giác đó (M không nằm trên các cạnh của tứ giác ABCD). Chứng minh tồn tại ít nhất một trong các góc có số đo không lớn hơn .
-------------Hết-----------
Thí sinh không được sử dụng tài liệu và máy tính cầm tay.
Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh:…………………….………..…….…….….….; Số báo danh……………………
SỞ GD&ĐT VĨNH PHÚC (Đáp án có 03 trang) | KỲ THI CHỌN HSG LỚP 10 THPT NĂM HỌC 2012-2013 ĐÁP ÁN MÔN: TOÁN (Dành cho học sinh THPT không chuyên) |
I. LƯU Ý CHUNG:
- Hướng dẫn chấm chỉ trình bày một cách giải với những ý cơ bản phải có. Khi chấm bài học sinh làm theo cách khác nếu đúng và đủ ý thì vẫn cho điểm tối đa.
- Điểm toàn bài tính đến 0,25 và không làm tròn.
- Với bài hình học nếu thí sinh không vẽ hình phần nào thì không cho điểm tương ứng với phần đó.
II. ĐÁP ÁN: |
Câu | Nội dung trình bày | Điểm |
1(3đ) | 1.a (1,5 điểm) | |
Điều kiện: Đặt . Thay vào ta được: . Do đó ta có hệ phương trình: | 0,25 | |
0,5 | ||
0,25 | ||
+) | 0,25 | |
+) (do ) Vậy phương trình đã cho có tập nghiệm là | 0,25 | |
1.b (1,5 điểm) | ||
Phương trình (1) có hai nghiệm không âm | 0,75 | |
Theo định lý Vi-ét ta có . Do đó | 0,5 | |
Do . Dấu đẳng thức xảy ra khi và chỉ khi . | 0,25 | |
2(2đ) | Đặt , thay vào hệ ta được: | 0,5 |
0,5 | ||
+) | 0,25 | |
+) | 0,5 | |
Vậy hệ phương trình có tập nghiệm là | 0,25 | |
3(1đ) | Do là độ dài ba cạnh của một tam giác không nhọn nên có một trong các bất đẳng thức sau xảy ra: . Giả sử , khi đó ta có: | 0,25 |
0,25 | ||
. Do đó . | 0,5 | |
4(3đ) | 4.a (1,0 điểm) | |
Áp dụng quy tắc trọng tâm và quy tắc trung điểm ta có: . Khi đó | 0,25 | |
0,25 | ||
(chú ý ) | 0,25 | |
0,25 | ||
4.b(1,0 điểm) | ||
Kí hiệu . Khi đó ta có | 0,25 | |
Theo công thức Hê – rông ta có: | 0,25 | |
, trong đó | 0,25 | |
Do đó . | 0,25 | |
4.c (1,0 điểm) | ||
Do BC vuông góc với đường cao kẻ từ A nên BC có dạng . Tọa độ đỉnh B là nghiệm của hệ , tọa độ C là nghiệm của hệ phương trình . | 0,25 | |
AB đi qua và vuông góc với đường cao kẻ từ C nên . Tọa độ đỉnh C là nghiệm của hệ . | 0,25 | |
Theo giả thiết ta có | 0,25 | |
+) Nếu . +) Nếu không thỏa mãn hoành độ của A âm. Vậy . | 0,25 | |
5(1đ) | Giả sử (1). Ta có . | 0,25 |
Kết hợp với (1) ta được Tương tự ta được các bất đẳng thức sau đây : | 0,25 | |
Cộng theo vế các bất đẳng thức (2), (3), (4), (5) ta được: (6) | 0,25 | |
Mặt khác ta lại có: , mâu thuẫn với (6). Do đó giả sử ban đầu là sai suy ra tồn tại ít nhất một trong các góc có số đo không lớn hơn . | 0,25 |
----------------------Hết----------------------
Xem thêm các bài tiếp theo bên dưới