Công thức toán học không thể tải, để xem trọn bộ tài liệu hoặc in ra làm bài tập, hãy tải file word về máy bạn nhé
TỨ GIÁC NỘI TIẾP VÀ CÁC BÀI TOÁN LIÊN QUAN CÓ LỜI GIẢI
Bài 1:
Cho ΔABC có các đường cao BD và CE. Đường thẳng DE cắt đường tròn ngoại tiếp tam giác tại hai điểm M và N.
Chứng tỏ: AM2=AE. AB.
Bài 2:
Cho(O) đường kính AC. trên đoạn OC lấy điểm B và vẽ đường tròn tâm O’, đường kính BC. Gọi M là trung điểm của đoạn AB. Từ M vẽ dây cung DE vuông góc với AB;DC cắt đường tròn tâm O’ tại I.
1. Tứ giác ADBE là hình gì?
2. C/m DMBI nội tiếp.
3. C/m B;I;E thẳng hàng và MI=MD.
4. C/m MC. DB=MI. DC
5. C/m MI là tiếp tuyến của (O’)
Bài 3:
Cho ΔABC có =1v. Trên AC lấy điểm M sao cho AM < MC. Vẽ đường tròn tâm O đường kính CM cắt BC tại E;đường thẳng BM cắt (O) tại D;AD kéo dài cắt (O) tại S.
Hình 3
Bài 4:
Cho ΔABC có = 1v. Trên cạnh AC lấy điểm M sao cho AM > MC. Dựng đường tròn tâm O đường kính MC; đường tròn này cắt BC tại E. Đường thẳng BM cắt (O) tại D và đường thẳng AD cắt (O) tại S.
Bài 5:
Cho tam giác ABC có 3 góc nhọn và AB < AC nội tiếp trong đường tròn tâm O. Kẻ đường cao AD và đường kính AA’. Gọi E:F theo thứ tự là chân đường vuông góc kẻ từ B và C xuống đường kính AA’.
Bài 6:
Cho ΔABC có ba góc nhọn nội tiếp trong đường tròn tâm O. Gọi M là một điểm bất kỳ trên cung nhỏ AC. Gọi E và F lần lượt là chân các đường vuông góc kẻ từ M đến BC và AC. P là trung điểm AB;Q là trung điểm FE.
1 . C/m MFEC nội tiếp.
2 . C/m BM. EF=BA. EM
3. C/M ΔAMP ΔFMQ.
4 . C/m = 90o.
Bài 7: Cho (O) đường kính BC,điểm A nằm trên cung BC. Trên tia AC lấy điểm D sao cho AB=AD. Dựng hình vuông ABED;AE cắt (O) tại điểm thứ hai F;Tiếp tuyến tại B cắt đường thẳng DE tại G.
Bài 8: Cho ΔABC có 3 góc nhọn nội tiếp trong (O). Tiếp tuyến tại B và C của đường tròn cắt nhau tại D. Từ D kẻ đường thẳng song song với AB,đường này cắt đường tròn ở E và F,cắt AC ở I(E nằm trên cung nhỏ BC).
Bài 9:
Cho (O),dây cung AB. Từ điểm M bất kỳ trên cung AB(M≠A và M≠B),kẻ dây cung MN vuông góc với AB tại H. Gọi MQ là đường cao của tam giác MAN.
Bài 10: Cho (O;R) và (I;r) tiếp xúc ngoài tại A (R> r) . Dựng tiếp tuyến chung ngoài BC (B nằm trên đường tròn tâm O và C nằm trên trên đường tròn tâm (I). Tiếp tuyến BC cắt tiếp tuyến tại A của hai đường tròn ở E.
1 . Chứng minh tam giác ABC vuông ở A.
2 . O E cắt AB ở N ; IE cắt AC tại F . Chứng minh N;E;F;A cùng nằm trên một đường tròn .
3. Chứng tỏ : BC2= 4 Rr
4 . Tính tích tích tứ giác BCIO theo R;r
Bài 11: Trên hai cạnh góc vuông xOy lấy hai điểm A và B sao cho OA=OB. Một đường thẳng qua A cắt OB tại M (M nằm trên đoạn OB). Từ B hạ đường vuông góc với AM tại H,cắt AO kéo dài tại I.
Bài 12: Cho (O) đường kính AB và dây CD vuông góc với AB tại F. Trên cung BC lấy điểm M. Nối A với M cắt CD tại E.
Bài 13: Cho (O) và điểm A nằm ngoài đường tròn. Vẽ các tiếp tuyến AB;AC và cát tuyến ADE. Gọi H là trung điểm DE.
Bài 14: Cho (O) đường kính AB = 2R; xy là tiếp tuyến với (O) tại B. CD là 1 đường kính bất kỳ. Gọi giao điểm của AC; AD với xy theo thứ tự là M;N.
3.Gọi I là tâm đường tròn ngoại tiếp tứ giác MCDN và H là trung điểm MN.
CMR: AOIH là hình bình hành.
4.Khi đường kính CD quay xung quanh điểm O thì I di động trên đường nào?
Bài 15:
Cho tam giác ABC nội tiếp trong đường tròn tâm O. Gọi D là 1 điểm trên cung nhỏ BC. Kẻ DE;DF;DG lần lượt vuông góc với các cạnh AB;BC;AC. Gọi H là hình chiêu của D lên tiếp tuyến Ax của (O).
C/m: HA. DP=PA. DE
5.C/m: E;F;G thẳng hàng |
Bài 16:
Cho tam giác ABC có =1v; AB < AC. Gọi I là trung điểm BC;qua I kẻ IK⊥BC (K nằm trên AC). Trên tia đối của tia AC lấy điểm M sao cho MA = AK.
Hình 16
Bài 17: Cho (O) đường kính AB cố định, điểm C di động trên nửa đường tròn. Tia phân giác của góc ACB cắt (O) tai M. Gọi H;K là hình chiêu của M lên AC và CB.
Bài 18:
Cho hình chữ nhật ABCD có chiều dài AB = 2a, chiều roäng BC = a. Kẻ tia phân giác của góc ACD, từ A hạ AH vuông góc với đường phân giác nói trên.
1. Chứng minh: AHDC nội tiếp trong đường tròn tâm O mà ta phải định rõ tâm và bán kính theo a.
2 . HB cắt AD tại I và cắt AC tại M;HC cắt DB tại N. Chứng tỏ HB = HC
Và AB. AC = BH. BI
3. Chứng tỏ MN song song với tiếp tuyến tại H của (O)
4 . Từ D kẻ đường thẳng song song với BH;đường này cắt HC ở K và cắt (O) ở J. Chứng minh HOKD nội tiếp.
Bài 19:
Cho nửa đường tròn (O) đường kính AB,bán kính OC ⊥ AB. Gọi M là 1 điểm trên cung BC. Kẻ đường cao CH của tam giác ACM.
Cmr: CDBM là hình thang cân.
BN. MC=IN. MA.
Bài 20:
H×nh 20
J
K
I
F
E
D
N
O
A
B
C
M
Cho Δ đều ABC nội tiếp trong (O;R). Trên cạnh AB và AC lấy hai điểm M;N sao cho BM=AN.
Bài 21:
Cho ΔABC (=1v) nội tiếp trong đường tròn tâm (O). Gọi M là trung điểm cạnh AC. Đường tròn tâm I đường kính MC cắt cạnh BC ở N và cắt (O) tại D.
Bài 22:
Cho hình vuông ABCD có cạnh bằng a. Gọi I là điểm bất kỳ trên đường chéo AC. Qua I kẻ các đường thẳng song song với AB;BC,các đường này cắt AB;BC;CD;DA lần lượt ở P;Q;N;M.
Bài 23:
Cho hình vuông ABCD,N là trung điểm DC;BN cắt AC tại F,Vẽ đường tròn tâm O đường kính BN. (O) cắt AC tại E. BE kéo dài cắt AD ở M;MN cắt (O) tại I.
5 . C/m: BM là đường trung trực của QH (H là giao điểm của BE và AB) và MQBN là thang cân
Bài 24:
Cho ΔABC có 3 góc nhọn (AB < AC). Vẽ đường cao AH. Từ H kẻ HK;HM lần lượt vuông góc với AB;AC. Gọi J là giao điểm của AH và MK.
Bài 25:
Cho ΔABC (=1v),đường cao AH. Đường tròn tâm H, bán kính HA cắt đường thẳng AB tại D và cắt AC tại E;Trung tuyến AM của ΔABC cắt DE tại I.
Bài 26:
Cho ΔABC có 2 góc nhọn,đường cao AH. Gọi K là điểm đối xứng của H qua AB;I là điểm đối xứng của H qua AC. E;F là giao điểm của KI với AB và AC.
Bài 27:
Cho ΔABC (AB = AC) nội tiếp trong (O). Gọi M là một điểm bất kỳ trên cung nhỏ AC. Trên tia BM lấy điểm K sao cho MK = MC và trên tia BA lấy điểm D sao cho AD=AC.
Bài 28:
Cho tứ giác ABCD nội tiếp trong(O). Gọi I là điểm chính giữa cung AB (Cung AB không chứa điểm C;D). ID và IC cắt AB ở M;N.
Bài 29:
Cho hình vuông ABCD, trên cạnh BC lấy điểm E. Dựng tia Ax vuông góc với AE, Ax cắt cạnh CD kéo dài tại F. Kẻ trung tuyến AI của ΔAEF, AI kéo dài cắt CD tại K. Qua E dựng đường thẳng song song với AB, cắt AI tại G.
Bài 30:
Cho ΔABC. Gọi H là trực tâm của tam giác. Dựng hình bình hành BHCD. Gọi I là giao điểm của HD và BC.
4. Gọi giao điểm của AI và OH là G. C/m G là trọng tâm của ΔABC.
Bài 31:
Cho (O) và sđ= 90o. C là một điểm tuỳ ý trên cung lớn AB. Các đường cao AI;BK;CJ của ΔABC cắt nhau ở H. BK cắt (O) ở N; AH cắt (O) tại M. BM và AN gaëp nhau ở D.
Bài 32:
Cho hình vuông ABCD. Gọi N là một điểm bất kỳ trên CD sao cho CN < ND;Vẽ đường tròn tâm O đường kính BN. (O) cắt AC tại F;BF cắt AD tại M;BN cắt AC tại E.
Bài 33:
Trên đường tròn tâm O lần lượt lấy bốn điểm A;B;C;D sao cho AB=DB; AB và CD cắt nhau ở E. BC cắt tiếp tuyến tại A của đường tròn(O) ở Q;DB cắt AC tại K.
Bài 34:
Cho (O) và tiếp tuyến Ax. Trên Ax lấy hai điểm B và C sao cho AB=BC. Kẻ cát tuyến BEF với đường tròn. CE và CF cắt (O) lần lượt ở M và N. Dựng hình bình hành AECD.
Bài 35:
Cho (O;R) và đường kính AB;CD vuông góc với nhau. Gọi M là một điểm trên cung nhỏ CB.
Bài 36:
Cho ΔABC (=1v). Kẻ AH⊥BC. Gọi O và O’ là tâm đường tròn nội tiếp các tam giác AHB và AHC. Đường thẳng O O’ cắt cạnh AB;AC tại M;N.
Bài 37:
Cho nửa đường tròn O,đường kính AB=2R,gọi I là trung điểm AO. Qua I dựng đường thẳng vuông góc với AB,đường này cắt nửa đường tròn ở K. Trên IK lấy điểm C,AC cắt (O) tại M;MB cắt đường thẳng IK tại D. Gọi giao điểm của IK với tiếp tuyến tại M là N.
Bài 38:
Cho ΔABC. Gọi P là một điểm nằm trong tam giác sao cho. Gọi H và K lần lượt là chân các đường vuông góc hạ từ P xuống AB;AC.
Bài 39:
Cho hình bình hành ABCD ( > 90o). Từ C kẻ CE;CF;CG lần lượt vuông góc với AD;DB;AB.
Bài 40:
Cho hai đường tròn (O) và (O’) cắt nhau ở A và B. Các đường thẳng AO cắt (O); (O') lần lượt ở C và E;đường thẳng AO’ cắt (O) và (O’) lần lượt ở D và F.
Bài 41:
Cho (O;R). Một cát tuyến xy cắt (O) ở E và F. Trên xy lấy điểm A nằm ngoài đoạn EF,vẽ 2 tiếp tuyến AB và AC với (O). Gọi H là trung điểm EF.
Bài 42:
Cho ΔABC (AB<AC) có hai đường phân giác CM,BN cắt nhau ở D. Qua A kẻ AE và AF lần lượt vuông góc với BN và CM. Các đường thẳng AE và AF cắt BC ở I;K.
Bài 43:
Cho ΔABC(A=1v);AB=15;AC=20(cùng ñôn vị đo đoä dài). Dựng đường tròn tâm O đường kính AB và (O’) đường kính AC. Hai đường tròn (O) và (O’) cắt nhau tại điểm thứ hai D.
Bài 44:
Trên (O;R),ta lần lượt đặt theo một chiều, kể từ điểm A một cung AB=60o, rồi cung BC = 90o và cung CD = 120o.
Bài 45:
Cho Δ đều ABC có cạnh bằng a. Gọi D là giao điểm hai đường phân giác góc A và góc B của tam giác BC. Từ D dựng tia Dx vuông góc với DB. Trên Dx lấy điểm E sao cho ED = DB (D và E nằm hai phía của đường thẳng AB). Từ E kẻ EF⊥BC. Gọi O là trung điểm EB.
Bài 46:
Cho nửa đường tròn (O) đường kính BC. Gọi a là một điểm bất kỳ trên nửa đường tròn;BA kéo dài cắt tiếp tuyến Cy ở F. Gọi D là điểm chính giữa cung AC;DB kéo dài cắt tiếp tuyến Cy tại E.
Bài 47:
Cho nửa đường tròn (O); Đường kính AD. Trên nửa đường tròn lấy hai điểm B và C sao cho cung AB < AC; AC cắt BD ở E. Kẻ EF⊥AD tại F.
Bài 48:
Cho (O) đường kính AB;P là một điểm di động trên cung AB sao cho PA<PB. Dựng hình vuông APQR vào phía trong đường tròn. Tia PR cắt (O) tại C.
Bài 49:
Cho nửa (O) đường kính AB=2R. Trên nửa đường tròn lấy điểm M sao cho cung AM<MB. Tiếp tuyến với nửa đường tròn tại M cắt tia tiếp tuyến Ax và By lần lượt ở D và C.
Bài 50:
Cho hình vuông ABCD,E là một điểm thuộc cạnh BC. Qua B kẻ đường thẳng vuông góc với DE ,đường này cắt các đường thẳng DE và DC theo thứ tự ở H và K.
Bài 51:
Cho (O), từ một điểm A nằm ngoài đường tròn (O), vẽ hai tia tiếp tuyến AB và AC với đường tròn. Kẻ dây CD//AB. Nối AD cắt đường tròn (O) tại E.
Hình 51
Bài 52:
Cho ΔABC (AB=AC); BC=6; Đường cao AH=4(cùng ñôn vị đoä dài), nội tiếp trong (O) đường kính AA’.
Bài 53:
Cho(O) và hai đường kính AB; CD vuông góc với nhau. Gọi I là trung điểm OA. Qua I vẽ dây MQ⊥OA (M∈ cung AC ; Q∈ AD). Đường thẳng vuông góc với MQ tại M cắt (O) tại P.
b/ P; Q; O thẳng hàng.
a/ MH. MQ= MP2.
b/ MP là tiếp tuyến của đường tròn ngoại tiếp ΔQHP.
Bài 54:
Cho (O;R) và một cát tuyến d không đi qua tâm O. Từ một điểm M trên d và ở ngoài (O) ta kẻ hai tiếp tuyến MA và MB với trênôømg tròn; BO kéo dài cắt (O) tại điểm thứ hai là C. Gọi H là chân đường vuông góc hạ từ O xuống d. Đường thẳng vuông góc với BC tại O cắt AM tại D.
Bài 55:
Cho nửa (O) đường kính AB, vẽ các tiếp tuyến Ax và By cùng phía với nửa đường tròn. Gọi M là điểm chính giữa cung AB và N là một điểm bất kỳ trên đoạn AO. Đường thẳng vuông góc với MN tại M lần lượt cắt Ax và By ở D và C.
Bài 56:
Từ một điểm M nằm ngoài (O) kẻ hai tiếp tuyến MA và MB với đường tròn. Trên cung nhỏ AB lấy điểm C và kẻ CD⊥AB; CE⊥MA; CF⊥MB. Gọi I và K là giao điểm của AC với DE và của BC với DF.
|
Bài 57:
Cho (O; R) đường kính AB, Kẻ tiếp tuyến Ax và trên Ax lấy điểm P sao cho P > R. Từ P kẻ tiếp tuyến PM với đường tròn.
Bài 58:
Cho nửa đường tròn tâm O, đường kính AB; đường thẳng vuông góc với AB tại O cắt nửa đường tròn tại C. Kẻ tiếp tuyến Bt với đường tròn. AC cắt tiếp tuyến Bt tại I.
AC. AI=AD. AJ.
Tiếp tuyến tại D của nửa đường tròn cắt Bt tại K. Hạ DH⊥AB. Cmr: AK đi qua trung điểm của DH. |
Bài 59:
Cho (O) và hai đường kính AB; CD vuông góc với nhau. Trên OC lấy điểm N; đường thẳng AN cắt đường tròn ở M.
Bài 60:
Cho (O) đường kính AB, và d là tiếp tuyến của đường tròn tại C. Gọi D; E theo thứ tự là hình chiêu của A và B lên đường thẳng d.
Chứng minh:DH//CB. |
Bài 61:
Cho ΔABC có: A=1v. D là một điểm nằm trên cạnh AB. Đường tròn đường kính BD cắt BC tại E. các đường thẳng CD;AE lần lượt cắt đường tròn tại các điểm thứ hai F và G.
Bài 62:
Cho (O;R) và một đường thẳng d cố định không cắt (O). M là điểm di động trên d. Từ M kẻ tiếp tuyến MP và MQ với đường tròn. . Hạ OH⊥d tại H và dây cung PQ cắt OH tại I;cắt OM tại K.
Bài 63:
Cho Δ vuông ABC ( = 1v) và AB < AC. Kẻ đường cao AH. Trên tia đối của tia HB lấy HD = HB rồi từ C vẽ đường thẳng CE⊥AD tại E.
Bài 64:
Cho tam giác ABC vuông cân ở A. Trong góc B,kẻ tia Bx cắt AC tại D,kẻ CE ⊥Bx tại E. Hai đường thẳng AB và CE cắt nhau ở F.
Nếu Bx quay xung quanh điểm B thì E di động trên đường nào? |
Bài 65:
Cho nửa đường tròn (O) đường kính AB. Trên nửa đường tròn lấy điểm M, Trên AB lấy điểm C sao cho AC<CB. Gọi Ax; By là hai tiếp tuyến của nửa đường tròn. Đường thẳng đi qua M và vuông góc với MC cắt Ax ở P; đường thẳng qua C và vuông góc với CP cắt By tại Q. Gọi D là giao điểm của CP với AM; E là giao điểm của CQ với BM.
1 . cm: ACMP nội tiếp.
2 . Chứng tỏ AB//DE
3. C/m: M; P; Q thẳng hàng.
Bài 66:
Cho nửa đường tròn (O), đường kính AB và một điểm M bất kỳ trên nửa đường tròn. Trên nửa mặt phẳng bờ AB chứa nửa trên đường tròn, người ta kẻ tiếp tuyến Ax. Tia BM cắt tia Ax tại I. Phân giác góc IAM cắt nửa đường tròn tại E; cắt tia BM tại F; Tia BE cắt Ax tại H; cắt AM tại K.
Bài 67:
Cho (O; R) có hai đường kính AB và CD vuông góc với nhau. Trên đoạn thẳng AB lấy điểm M(Khaùc A; O; B). Đường thẳng CM cắt (O) tại N. Đường vuông góc với AB tại M cắt tiếp tuyến tại N của đường tròn tại P. Chứng minh:
Bài 68:
Cho ΔABC có = 1v và AB > AC, đường cao AH. Trên nửa mặt phẳng bờ BC chứa điểm A vẽ hai nửa đường tròn đường kính BH và nửa đường tròn đường kính HC. Hai nửa đường tròn này cắt AB và AC tại E và F. Giao điểm của FE và AH là O. Chứng minh:
Bài 69:Cho ΔABC có A=1v AH⊥BC. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC;d là tiếp tuyến của đường tròn tại điểm A. Các tiếp tuyến tại B và C cắt d theo thứ tự ở D và E.
Bài 70: Cho ΔABC (=1v); đường cao AH. Vẽ đường tròn tâm A bán kính AH. Gọi HD là đường kính của đường tròn (A;AH). Tiếp tuyến của đường tròn tại D cắt CA tại E. Chứng minh ΔBEC cân.
Bài 71:
Trên cạnh CD của hình vuông ABCD,lấy một điểm M bất kỳ. Đường tròn đường kính AM cắt AB tại điểm thứ hai Q và cắt đường tròn đường kính CD tại điểm thứ hai N. Tia DN cắt cạnh BC tại P.
Bài 72:
Cho ΔABC nội tiếp trong đường tròn tâm O. D và E theo thứ tự là điểm chính giữa các cung AB;AC. Gọi giao điểm DE với AB;AC theo thứ tự là H và K.
Bài 73:
Cho ΔABC(AB=AC) nội tiếp trong (O),kẻ dây cung AA’ và từ C kẻ đường vuông góc CD với AA’,đường này cắt BA’ tại E.
Bài 74:
Cho ΔABC nội tiếp trong nửa đường tròn đường kính AB. O là trung điểm AB;M là điểm chính giữa cung AC. H là giao điểm OM với AC
Bài 75:
Cho nửa đường tròn tâm O đường kính EF. Từ O vẽ tia Ot⊥ EF, noù cắt nửa đường tròn (O) tại I. Trên tia Ot lấy điểm A sao cho IA = IO. Từ A kẻ hai tiếp tuyến AP và AQ với nửa đường tròn; chúng cắt đường thẳng EF tại B và C (P;Q là các tiếp điểm).
1. Cmr: ΔABC là tam giác đều và tứ giác BPQC nội tiếp.
2. Từ S là điểm tuỳ ý trên cung PQ. vẽ tiếp tuyến với nửa đường tròn;tiếp tuyến này cắt AP tại H,cắt AC tại K. Tính sđ của góc HOK
3. Gọi M; N lần lượt là giao điểm của PQ với OH; OK. Cm OMKQ nội tiếp.
4. Chứng minh raèng ba đường thẳng HN; KM; OS đồng quy tại điểm D, và D cùng nằm trên đường tròn ngoại tiếp ΔHOK.
Bài 76:
Cho hình thang ABCD nội tiếp trong (O),các đường chéo AC và BD cắt nhau ở E. Các cạnh beân AD;BC kéo dài cắt nhau ở F.
Bài 77:
Cho (O) và đường thẳng xy không cắt đường tròn. Kẻ OA⊥xy rồi từ A dựng đường thẳng ABC cắt (O) tại B và C. Tiếp tuyến tại B và C của (O) cắt xy tại D và E. Đường thẳng BD cắt OA;CE lần lượt ở F và M;OE cắt AC ở N.
Bài 78:
Cho (O;R) và A là một điểm ở ngoài đường tròn. Kẻ tiếp tuyến AB và AC với đường tròn. OB kéo dài cắt AC ở D và cắt đường tròn ở E.
1 . Chứng tỏ EC // với OA.
2 . Chứng minh raèng: 2AB. R = AO. CB.
3. Gọi M là một điểm di động trên cung nhỏ BC, qua M dựng một tiếp tuyến với đường tròn, tiếp tuyến này cắt AB vàAC lần lượt ở I,J . Chứng tỏ chu vi tam giác AI J không đổi khi M di động trên cung nhỏ BC.
4 . Xác định vị trí của M trên cung nhỏ BC để 4 điểm J,I,B,C cùng nằm trên một đường tròn.
Bài 79:
Cho(O),từ điểm P nằm ngoài đường tròn,kẻ hai tiếp tuyến PA và PB với đường tròn. Trên đoạn thẳng AB lấy điểm M,qua M dựng đường thẳng vuông góc với OM,đường này cắt PA,PB lần lượt ở C và D.
1 . Chứng minh A,C,M,O cùng nằm trên một đường tròn.
2 . Chứng minh: COD = AOB.
3. Chứng minh: Tam giác COD cân.
4 . Vẽ đường kính BK của đường tròn,hạ AH ⊥BK. Gọi I là giao điểm của AH với PK. Chứng minh AI = IH.
Bài 80:
Cho tam giác ABC có 3 góc nhọn nội tiếp trong đường tròn tâm O. Ba đường cao AK; BE; CD cắt nhau ở H.
1 . Chứng minh tứ giác BDEC nội tiếp.
2 . Chứng minh : AD. AB = AE. AC.
3. Chứng tỏ AK là phân giác của góc DKE.
4 . Gọi I; J là trung điểm BC và DE. Chứng minh: OA//JI.
Bài 81:
Cho tam giác ABC có 3 góc nhọn nội tiếp trong đường tròn tâm O. Tiếp tuyến tại B và C của đường tròn cắt nhau tại D. Từ D kẻ đường thẳng song song với AB,đường này cắt đường tròn ở E và F,cắt AC tại I(Enằm trên cung nhỏ BC)
1 . Chứng minh BDCO nội tiếp.
2 . Chứng minh: DC2 = DE. DF
3. Chứng minh DOCI nội tiếp được trong đường tròn.
4 . Chứng tỏ I là trung điểm EF.
Bài 82:
Cho đường tròn tâm O,đường kính AB và dây CD vuông góc với AB tại F. Trên cung BC,lấy điểm M. AM cắt CD tại E.
1 . Chứng minh AM là phân giác của góc CMD.
2 . Chứng minh tứ giác EFBM nội tiếp được trong một đường tròn.
3. Chứng tỏ AC2 = AE. AM
4 . Gọi giao điểm của CB với AM là N;MD với AB là I. Chứng minh NI//CD.
Bài 83:
Cho ΔABC có A = 1v;Kẻ AH⊥BC. Qua H dựng đường thẳng thứ nhất cắt cạnh AB ở E và cắt đường thẳng AC tại G. Đường thẳng thứ hai vuông góc với đường thẳng thứ nhất và cắt cạnh AC ở F,cắt đường thẳng AB tại D.
Bài 84:
Cho ΔABC (AB = AC) nội tiếp trong (O). M là một điểm trên cung nhỏ AC, phân giác góc BMC cắt BC ở N,cắt (O) ở I.
Bài 85:
Cho nửa đường tròn (O) đường kính AB. Gọi C là một điểm trên nửa đường tròn. Trên nửa mặt phẳng bờ AB chứa điểm C,kẻ hai tiếp tuyến Ax và By. Một đường tròn (O’) qua A và C cắt AB và tia Ax theo thứ tự tại D và E. Đường thẳng EC cắt By tại F.
Bài 86:
Cho (O;R và (O’;r) trong đó R>r, cắt nhau tại Avà B. Gọi I là một điểm bất kỳ trên đường thẳng AB và nằm ngoài đoạn thẳng AB. Kẻ hai tiếp tuyến IC và ID với (O) và (O’). Đường thẳng OC và O’D cắt nhau ở K.
a/ Chứng minh: IE. IF = IM. IN.
b/ E; F; M; N nằm trên một đường tròn.
Bài 87:
ChoΔABC có 3 góc nhọn. Vẽ đường tròn tâm O đường kính BC. (O) cắt AB;AC lần lượt ở D và E. BE và CD cắt nhau ở H.
Bài 88:
Cho(O;R) và (O’;r) cắt nhau ở Avà B. Qua B vẽ cát tuyến chung CBD⊥AB (C∈(O)) và cát tuyến EBF bất kỳ(E∈(O)).
Bài 89:
Cho ΔABC có A = 1v. Qua A dựng đường tròn tâm O bán kính R tiếp xúc với BC tại B và dựng (O’;r) tiếp xúc với BC tại C. Gọi M;N là trung điểm AB;AC,OM và ON kéo dài cắt nhau ở K.
Bài 90:
Cho tứ giác ABCD (AB>BC) nội tiếp trong (O) đường kính AC; Hai đường chéo AC và DB vuông góc với nhau. Đường thẳng AB và CD kéo dài cắt nhau ở E; BC và AD cắt nhau ở F.
Bài 91:
Cho (O) và (O’) tiếp xúc ngoài tại A. Đường thẳng OO’ cắt (O) và (O’) tại B và C (khaùc A). Kẻ tiếp tuyến chung ngoài DE(D∈(O)); DB và CE kéo dài cắt nhau ở M.
Bài 92:
Cho hình vuông ABCD. Trên BC lấy điểm M. Từ C hạ CK⊥ với đường thẳng AM.
Bài 93:
Cho hình chữ nhật ABCD(AB>AD)có AC cắt DB ở O. Gọi M là 1 điểm trên OB và N là điểm đối xứng với C qua M. Kẻ NE; NF và NP lần lượt vuông góc với AB; AD; AC; PN cắt AB ở Q.
Bài 94:
Từ đỉnh A của hình vuông ABCD,ta kẻ hai tia tạio với nhau 1 góc bằng 45o. Một tia cắt cạnh BC tại E và cắt đường chéo DB tại P. Tia kia cắt cạnh CD tại F và cắt đường chéo DB tại Q.
Bài 95:
Cho hình chữ nhật ABCD có hai đường chéo cắt nhau ở O. Kẻ AH và BK vuông góc với BD và AC. Đường thẳng AH và BK cắt nhau ở I. Gọi E và F lần lượt là trung điểm DH và BC. Từ E dụng đường thẳng song song với AD. Đường này cắt AH ở J.
Bài 96:
Cho ΔABC, phân giác góc trong và góc ngoài của các góc B và C gaëp nhau theo thứ tự ở I và J. Từ J kẻ JH; JP; JK lần lượt vuông góc với các đường thẳng AB; BC; AC.
Bài 97:
Từ đỉnh A của hình vuông ABCD ta kẻ hai tia Ax và Ay sao cho: Ax cắt cạnh BC ở P,Ay cắt cạnh CD ở Q. Kẻ BK⊥Ax;BI⊥Ay và DM⊥Ax,DN⊥Ay .
Bài 98:
Cho hình bình hành ABCD có góc A>90o. Phân giác góc A cắt cạnh CD và đường thẳng BC tại I và K. Hạ KH và KM lần lượt vuông góc với CD và AM.
Bài 99:
Cho(O) và tiếp tuyến Ax. Trên Ax lấy điểm C và gọi B là trung điểm AC. Vẽ cát tuyến BEF. Đường thẳng CE và CF gaëp lại đường tròn ở điểm thứ hai tại M và N. Dựng hình bình hành AECD.
Bài 100:
Trên (O) lấy 3 điểm A;B;C. Gọi M;N;P lần lượt theo thứ tự là điểm chính giữa cung AB;BC;AC . AM cắt MP và BP lần lượt ở K và I. MN cắt AB ở E.
Bài 101. Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A và B. Vẽ đường thẳng (d) qua A cắt (O) tại C và cắt (O’) tại D sao cho A nằm giữa C và D. Tiếp tuyến của (O) tại C và tiếp tuyến của (O’) tại D cắt nhau tại E. a/ Chứng minh rằng tứ giác BDEC nội tiếp. b/ Chứng minh rằng |
Xem thêm các bài tiếp theo bên dưới